Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os.path as osp | |
from typing import Union | |
try: | |
import seaborn as sns | |
except ImportError: | |
sns = None | |
import cv2 | |
import matplotlib.pyplot as plt | |
import mmcv | |
import numpy as np | |
from matplotlib.patches import Rectangle | |
from mmengine.utils import mkdir_or_exist | |
def imshow_mot_errors(*args, backend: str = 'cv2', **kwargs): | |
"""Show the wrong tracks on the input image. | |
Args: | |
backend (str, optional): Backend of visualization. | |
Defaults to 'cv2'. | |
""" | |
if backend == 'cv2': | |
return _cv2_show_wrong_tracks(*args, **kwargs) | |
elif backend == 'plt': | |
return _plt_show_wrong_tracks(*args, **kwargs) | |
else: | |
raise NotImplementedError() | |
def _cv2_show_wrong_tracks(img: Union[str, np.ndarray], | |
bboxes: np.ndarray, | |
ids: np.ndarray, | |
error_types: np.ndarray, | |
thickness: int = 2, | |
font_scale: float = 0.4, | |
text_width: int = 10, | |
text_height: int = 15, | |
show: bool = False, | |
wait_time: int = 100, | |
out_file: str = None) -> np.ndarray: | |
"""Show the wrong tracks with opencv. | |
Args: | |
img (str or ndarray): The image to be displayed. | |
bboxes (ndarray): A ndarray of shape (k, 5). | |
ids (ndarray): A ndarray of shape (k, ). | |
error_types (ndarray): A ndarray of shape (k, ), where 0 denotes | |
false positives, 1 denotes false negative and 2 denotes ID switch. | |
thickness (int, optional): Thickness of lines. | |
Defaults to 2. | |
font_scale (float, optional): Font scale to draw id and score. | |
Defaults to 0.4. | |
text_width (int, optional): Width to draw id and score. | |
Defaults to 10. | |
text_height (int, optional): Height to draw id and score. | |
Defaults to 15. | |
show (bool, optional): Whether to show the image on the fly. | |
Defaults to False. | |
wait_time (int, optional): Value of waitKey param. | |
Defaults to 100. | |
out_file (str, optional): The filename to write the image. | |
Defaults to None. | |
Returns: | |
ndarray: Visualized image. | |
""" | |
if sns is None: | |
raise ImportError('please run pip install seaborn') | |
assert bboxes.ndim == 2, \ | |
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.' | |
assert ids.ndim == 1, \ | |
f' ids ndim should be 1, but its ndim is {ids.ndim}.' | |
assert error_types.ndim == 1, \ | |
f' error_types ndim should be 1, but its ndim is {error_types.ndim}.' | |
assert bboxes.shape[0] == ids.shape[0], \ | |
'bboxes.shape[0] and ids.shape[0] should have the same length.' | |
assert bboxes.shape[1] == 5, \ | |
f' bboxes.shape[1] should be 5, but its {bboxes.shape[1]}.' | |
bbox_colors = sns.color_palette() | |
# red, yellow, blue | |
bbox_colors = [bbox_colors[3], bbox_colors[1], bbox_colors[0]] | |
bbox_colors = [[int(255 * _c) for _c in bbox_color][::-1] | |
for bbox_color in bbox_colors] | |
if isinstance(img, str): | |
img = mmcv.imread(img) | |
else: | |
assert img.ndim == 3 | |
img_shape = img.shape | |
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) | |
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) | |
for bbox, error_type, id in zip(bboxes, error_types, ids): | |
x1, y1, x2, y2 = bbox[:4].astype(np.int32) | |
score = float(bbox[-1]) | |
# bbox | |
bbox_color = bbox_colors[error_type] | |
cv2.rectangle(img, (x1, y1), (x2, y2), bbox_color, thickness=thickness) | |
# FN does not have id and score | |
if error_type == 1: | |
continue | |
# score | |
text = '{:.02f}'.format(score) | |
width = (len(text) - 1) * text_width | |
img[y1:y1 + text_height, x1:x1 + width, :] = bbox_color | |
cv2.putText( | |
img, | |
text, (x1, y1 + text_height - 2), | |
cv2.FONT_HERSHEY_COMPLEX, | |
font_scale, | |
color=(0, 0, 0)) | |
# id | |
text = str(id) | |
width = len(text) * text_width | |
img[y1 + text_height:y1 + text_height * 2, | |
x1:x1 + width, :] = bbox_color | |
cv2.putText( | |
img, | |
str(id), (x1, y1 + text_height * 2 - 2), | |
cv2.FONT_HERSHEY_COMPLEX, | |
font_scale, | |
color=(0, 0, 0)) | |
if show: | |
mmcv.imshow(img, wait_time=wait_time) | |
if out_file is not None: | |
mmcv.imwrite(img, out_file) | |
return img | |
def _plt_show_wrong_tracks(img: Union[str, np.ndarray], | |
bboxes: np.ndarray, | |
ids: np.ndarray, | |
error_types: np.ndarray, | |
thickness: float = 0.1, | |
font_scale: float = 3.0, | |
text_width: int = 8, | |
text_height: int = 13, | |
show: bool = False, | |
wait_time: int = 100, | |
out_file: str = None) -> np.ndarray: | |
"""Show the wrong tracks with matplotlib. | |
Args: | |
img (str or ndarray): The image to be displayed. | |
bboxes (ndarray): A ndarray of shape (k, 5). | |
ids (ndarray): A ndarray of shape (k, ). | |
error_types (ndarray): A ndarray of shape (k, ), where 0 denotes | |
false positives, 1 denotes false negative and 2 denotes ID switch. | |
thickness (float, optional): Thickness of lines. | |
Defaults to 0.1. | |
font_scale (float, optional): Font scale to draw id and score. | |
Defaults to 3.0. | |
text_width (int, optional): Width to draw id and score. | |
Defaults to 8. | |
text_height (int, optional): Height to draw id and score. | |
Defaults to 13. | |
show (bool, optional): Whether to show the image on the fly. | |
Defaults to False. | |
wait_time (int, optional): Value of waitKey param. | |
Defaults to 100. | |
out_file (str, optional): The filename to write the image. | |
Defaults to None. | |
Returns: | |
ndarray: Original image. | |
""" | |
assert bboxes.ndim == 2, \ | |
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.' | |
assert ids.ndim == 1, \ | |
f' ids ndim should be 1, but its ndim is {ids.ndim}.' | |
assert error_types.ndim == 1, \ | |
f' error_types ndim should be 1, but its ndim is {error_types.ndim}.' | |
assert bboxes.shape[0] == ids.shape[0], \ | |
'bboxes.shape[0] and ids.shape[0] should have the same length.' | |
assert bboxes.shape[1] == 5, \ | |
f' bboxes.shape[1] should be 5, but its {bboxes.shape[1]}.' | |
bbox_colors = sns.color_palette() | |
# red, yellow, blue | |
bbox_colors = [bbox_colors[3], bbox_colors[1], bbox_colors[0]] | |
if isinstance(img, str): | |
img = plt.imread(img) | |
else: | |
assert img.ndim == 3 | |
img = mmcv.bgr2rgb(img) | |
img_shape = img.shape | |
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) | |
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) | |
plt.imshow(img) | |
plt.gca().set_axis_off() | |
plt.autoscale(False) | |
plt.subplots_adjust( | |
top=1, bottom=0, right=1, left=0, hspace=None, wspace=None) | |
plt.margins(0, 0) | |
plt.gca().xaxis.set_major_locator(plt.NullLocator()) | |
plt.gca().yaxis.set_major_locator(plt.NullLocator()) | |
plt.rcParams['figure.figsize'] = img_shape[1], img_shape[0] | |
for bbox, error_type, id in zip(bboxes, error_types, ids): | |
x1, y1, x2, y2, score = bbox | |
w, h = int(x2 - x1), int(y2 - y1) | |
left_top = (int(x1), int(y1)) | |
# bbox | |
plt.gca().add_patch( | |
Rectangle( | |
left_top, | |
w, | |
h, | |
thickness, | |
edgecolor=bbox_colors[error_type], | |
facecolor='none')) | |
# FN does not have id and score | |
if error_type == 1: | |
continue | |
# score | |
text = '{:.02f}'.format(score) | |
width = len(text) * text_width | |
plt.gca().add_patch( | |
Rectangle((left_top[0], left_top[1]), | |
width, | |
text_height, | |
thickness, | |
edgecolor=bbox_colors[error_type], | |
facecolor=bbox_colors[error_type])) | |
plt.text( | |
left_top[0], | |
left_top[1] + text_height + 2, | |
text, | |
fontsize=font_scale) | |
# id | |
text = str(id) | |
width = len(text) * text_width | |
plt.gca().add_patch( | |
Rectangle((left_top[0], left_top[1] + text_height + 1), | |
width, | |
text_height, | |
thickness, | |
edgecolor=bbox_colors[error_type], | |
facecolor=bbox_colors[error_type])) | |
plt.text( | |
left_top[0], | |
left_top[1] + 2 * (text_height + 1), | |
text, | |
fontsize=font_scale) | |
if out_file is not None: | |
mkdir_or_exist(osp.abspath(osp.dirname(out_file))) | |
plt.savefig(out_file, dpi=300, bbox_inches='tight', pad_inches=0.0) | |
if show: | |
plt.draw() | |
plt.pause(wait_time / 1000.) | |
plt.clf() | |
return img | |