Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Helpers for random number generators.""" | |
import numpy as np | |
def ensure_rng(rng=None): | |
"""Coerces input into a random number generator. | |
If the input is None, then a global random state is returned. | |
If the input is a numeric value, then that is used as a seed to construct a | |
random state. Otherwise the input is returned as-is. | |
Adapted from [1]_. | |
Args: | |
rng (int | numpy.random.RandomState | None): | |
if None, then defaults to the global rng. Otherwise this can be an | |
integer or a RandomState class | |
Returns: | |
(numpy.random.RandomState) : rng - | |
a numpy random number generator | |
References: | |
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 | |
""" | |
if rng is None: | |
rng = np.random.mtrand._rand | |
elif isinstance(rng, int): | |
rng = np.random.RandomState(rng) | |
else: | |
rng = rng | |
return rng | |