Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import base64 | |
import os | |
import mmcv | |
import numpy as np | |
import torch | |
from ts.torch_handler.base_handler import BaseHandler | |
from mmdet.apis import inference_detector, init_detector | |
class MMdetHandler(BaseHandler): | |
threshold = 0.5 | |
def initialize(self, context): | |
properties = context.system_properties | |
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = torch.device(self.map_location + ':' + | |
str(properties.get('gpu_id')) if torch.cuda. | |
is_available() else self.map_location) | |
self.manifest = context.manifest | |
model_dir = properties.get('model_dir') | |
serialized_file = self.manifest['model']['serializedFile'] | |
checkpoint = os.path.join(model_dir, serialized_file) | |
self.config_file = os.path.join(model_dir, 'config.py') | |
self.model = init_detector(self.config_file, checkpoint, self.device) | |
self.initialized = True | |
def preprocess(self, data): | |
images = [] | |
for row in data: | |
image = row.get('data') or row.get('body') | |
if isinstance(image, str): | |
image = base64.b64decode(image) | |
image = mmcv.imfrombytes(image) | |
images.append(image) | |
return images | |
def inference(self, data, *args, **kwargs): | |
results = inference_detector(self.model, data) | |
return results | |
def postprocess(self, data): | |
# Format output following the example ObjectDetectionHandler format | |
output = [] | |
for data_sample in data: | |
pred_instances = data_sample.pred_instances | |
bboxes = pred_instances.bboxes.cpu().numpy().astype( | |
np.float32).tolist() | |
labels = pred_instances.labels.cpu().numpy().astype( | |
np.int32).tolist() | |
scores = pred_instances.scores.cpu().numpy().astype( | |
np.float32).tolist() | |
preds = [] | |
for idx in range(len(labels)): | |
cls_score, bbox, cls_label = scores[idx], bboxes[idx], labels[ | |
idx] | |
if cls_score >= self.threshold: | |
class_name = self.model.dataset_meta['classes'][cls_label] | |
result = dict( | |
class_label=cls_label, | |
class_name=class_name, | |
bbox=bbox, | |
score=cls_score) | |
preds.append(result) | |
output.append(preds) | |
return output | |