Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import subprocess | |
from collections import OrderedDict | |
import torch | |
from mmengine.runner import CheckpointLoader | |
convert_dict_fpn = { | |
'module.backbone.fpn.fpn_inner2': 'neck.lateral_convs.0.conv', | |
'module.backbone.fpn.fpn_inner3': 'neck.lateral_convs.1.conv', | |
'module.backbone.fpn.fpn_inner4': 'neck.lateral_convs.2.conv', | |
'module.backbone.fpn.fpn_layer2': 'neck.fpn_convs.0.conv', | |
'module.backbone.fpn.fpn_layer3': 'neck.fpn_convs.1.conv', | |
'module.backbone.fpn.fpn_layer4': 'neck.fpn_convs.2.conv', | |
'module.backbone.fpn.top_blocks.p6': 'neck.fpn_convs.3.conv', | |
'module.backbone.fpn.top_blocks.p7': 'neck.fpn_convs.4.conv', | |
} | |
def correct_unfold_reduction_order(x): | |
out_channel, in_channel = x.shape | |
x = x.reshape(out_channel, 4, in_channel // 4) | |
x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel) | |
return x | |
def correct_unfold_norm_order(x): | |
in_channel = x.shape[0] | |
x = x.reshape(4, in_channel // 4) | |
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) | |
return x | |
def convert(ckpt): | |
new_ckpt = OrderedDict() | |
for k, v in list(ckpt.items()): | |
if 'anchor_generator' in k or 'resizer' in k or 'cls_logits' in k: | |
continue | |
new_v = v | |
if 'module.backbone.body' in k: | |
new_k = k.replace('module.backbone.body', 'backbone') | |
if 'patch_embed.proj' in new_k: | |
new_k = new_k.replace('patch_embed.proj', | |
'patch_embed.projection') | |
elif 'pos_drop' in new_k: | |
new_k = new_k.replace('pos_drop', 'drop_after_pos') | |
if 'layers' in new_k: | |
new_k = new_k.replace('layers', 'stages') | |
if 'mlp.fc1' in new_k: | |
new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0') | |
elif 'mlp.fc2' in new_k: | |
new_k = new_k.replace('mlp.fc2', 'ffn.layers.1') | |
elif 'attn' in new_k: | |
new_k = new_k.replace('attn', 'attn.w_msa') | |
if 'downsample' in k: | |
if 'reduction.' in k: | |
new_v = correct_unfold_reduction_order(v) | |
elif 'norm.' in k: | |
new_v = correct_unfold_norm_order(v) | |
elif 'module.backbone.fpn' in k: | |
old_k = k.replace('.weight', '') | |
old_k = old_k.replace('.bias', '') | |
new_k = k.replace(old_k, convert_dict_fpn[old_k]) | |
elif 'module.language_backbone' in k: | |
new_k = k.replace('module.language_backbone', | |
'language_model.language_backbone') | |
if 'pooler' in k: | |
continue | |
elif 'module.rpn' in k: | |
if 'module.rpn.head.scales' in k: | |
new_k = k.replace('module.rpn.head.scales', | |
'bbox_head.head.scales') | |
else: | |
new_k = k.replace('module.rpn', 'bbox_head') | |
if 'anchor_generator' in k and 'resizer' in k: | |
continue | |
else: | |
print('skip:', k) | |
continue | |
if 'DyConv' in new_k: | |
new_k = new_k.replace('DyConv', 'dyconvs') | |
if 'AttnConv' in new_k: | |
new_k = new_k.replace('AttnConv', 'attnconv') | |
new_ckpt[new_k] = new_v | |
return new_ckpt | |
def main(): | |
parser = argparse.ArgumentParser( | |
description='Convert keys to mmdet style.') | |
parser.add_argument( | |
'src', default='glip_a_tiny_o365.pth', help='src model path or url') | |
# The dst path must be a full path of the new checkpoint. | |
parser.add_argument( | |
'--dst', default='glip_tiny_a_mmdet.pth', help='save path') | |
args = parser.parse_args() | |
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') | |
if 'model' in checkpoint: | |
state_dict = checkpoint['model'] | |
else: | |
state_dict = checkpoint | |
weight = convert(state_dict) | |
torch.save(weight, args.dst) | |
sha = subprocess.check_output(['sha256sum', args.dst]).decode() | |
final_file = args.dst.replace('.pth', '') + '-{}.pth'.format(sha[:8]) | |
subprocess.Popen(['mv', args.dst, final_file]) | |
print(f'Done!!, save to {final_file}') | |
if __name__ == '__main__': | |
main() | |