sapiens-pose / external /engine /mmengine /model /efficient_conv_bn_eval.py
rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
6.45 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from operator import attrgetter
from typing import List, Union
import torch
import torch.nn as nn
def efficient_conv_bn_eval_forward(bn: nn.modules.batchnorm._BatchNorm,
conv: nn.modules.conv._ConvNd,
x: torch.Tensor):
"""Code borrowed from mmcv 2.0.1, so that this feature can be used for old
mmcv versions.
Implementation based on https://arxiv.org/abs/2305.11624
"Tune-Mode ConvBN Blocks For Efficient Transfer Learning"
It leverages the associative law between convolution and affine transform,
i.e., normalize (weight conv feature) = (normalize weight) conv feature.
It works for Eval mode of ConvBN blocks during validation, and can be used
for training as well. It reduces memory and computation cost.
Args:
bn (_BatchNorm): a BatchNorm module.
conv (nn._ConvNd): a conv module
x (torch.Tensor): Input feature map.
"""
# These lines of code are designed to deal with various cases
# like bn without affine transform, and conv without bias
weight_on_the_fly = conv.weight
if conv.bias is not None:
bias_on_the_fly = conv.bias
else:
bias_on_the_fly = torch.zeros_like(bn.running_var)
if bn.weight is not None:
bn_weight = bn.weight
else:
bn_weight = torch.ones_like(bn.running_var)
if bn.bias is not None:
bn_bias = bn.bias
else:
bn_bias = torch.zeros_like(bn.running_var)
# shape of [C_out, 1, 1, 1] in Conv2d
weight_coeff = torch.rsqrt(bn.running_var +
bn.eps).reshape([-1] + [1] *
(len(conv.weight.shape) - 1))
# shape of [C_out, 1, 1, 1] in Conv2d
coefff_on_the_fly = bn_weight.view_as(weight_coeff) * weight_coeff
# shape of [C_out, C_in, k, k] in Conv2d
weight_on_the_fly = weight_on_the_fly * coefff_on_the_fly
# shape of [C_out] in Conv2d
bias_on_the_fly = bn_bias + coefff_on_the_fly.flatten() *\
(bias_on_the_fly - bn.running_mean)
return conv._conv_forward(x, weight_on_the_fly, bias_on_the_fly)
def efficient_conv_bn_eval_control(bn: nn.modules.batchnorm._BatchNorm,
conv: nn.modules.conv._ConvNd,
x: torch.Tensor):
"""This function controls whether to use `efficient_conv_bn_eval_forward`.
If the following `bn` is in `eval` mode, then we turn on the special
`efficient_conv_bn_eval_forward`.
"""
if not bn.training:
# bn in eval mode
output = efficient_conv_bn_eval_forward(bn, conv, x)
return output
else:
conv_out = conv._conv_forward(x, conv.weight, conv.bias)
return bn(conv_out)
def efficient_conv_bn_eval_graph_transform(fx_model):
"""Find consecutive conv+bn calls in the graph, inplace modify the graph
with the fused operation."""
modules = dict(fx_model.named_modules())
patterns = [(torch.nn.modules.conv._ConvNd,
torch.nn.modules.batchnorm._BatchNorm)]
pairs = []
# Iterate through nodes in the graph to find ConvBN blocks
for node in fx_model.graph.nodes:
# If our current node isn't calling a Module then we can ignore it.
if node.op != 'call_module':
continue
target_module = modules[node.target]
found_pair = False
for conv_class, bn_class in patterns:
if isinstance(target_module, bn_class):
source_module = modules[node.args[0].target]
if isinstance(source_module, conv_class):
found_pair = True
# Not a conv-BN pattern or output of conv is used by other nodes
if not found_pair or len(node.args[0].users) > 1:
continue
# Find a pair of conv and bn computation nodes to optimize
conv_node = node.args[0]
bn_node = node
pairs.append([conv_node, bn_node])
for conv_node, bn_node in pairs:
# set insertion point
fx_model.graph.inserting_before(conv_node)
# create `get_attr` node to access modules
# note that we directly call `create_node` to fill the `name`
# argument. `fx_model.graph.get_attr` and
# `fx_model.graph.call_function` does not allow the `name` argument.
conv_get_node = fx_model.graph.create_node(
op='get_attr', target=conv_node.target, name='get_conv')
bn_get_node = fx_model.graph.create_node(
op='get_attr', target=bn_node.target, name='get_bn')
# prepare args for the fused function
args = (bn_get_node, conv_get_node, conv_node.args[0])
# create a new node
new_node = fx_model.graph.create_node(
op='call_function',
target=efficient_conv_bn_eval_control,
args=args,
name='efficient_conv_bn_eval')
# this node replaces the original conv + bn, and therefore
# should replace the uses of bn_node
bn_node.replace_all_uses_with(new_node)
# take care of the deletion order:
# delete bn_node first, and then conv_node
fx_model.graph.erase_node(bn_node)
fx_model.graph.erase_node(conv_node)
# regenerate the code
fx_model.graph.lint()
fx_model.recompile()
def turn_on_efficient_conv_bn_eval_for_single_model(model: torch.nn.Module):
import torch.fx as fx
# currently we use `fx.symbolic_trace` to trace models.
# in the future, we might turn to pytorch 2.0 compile infrastructure to
# get the `fx.GraphModule` IR. Nonetheless, the graph transform function
# can remain unchanged. We just need to change the way
# we get `fx.GraphModule`.
fx_model: fx.GraphModule = fx.symbolic_trace(model)
efficient_conv_bn_eval_graph_transform(fx_model)
model.forward = fx_model.forward
def turn_on_efficient_conv_bn_eval(model: torch.nn.Module,
modules: Union[List[str], str]):
if isinstance(modules, str):
modules = [modules]
for module_name in modules:
module = attrgetter(module_name)(model)
turn_on_efficient_conv_bn_eval_for_single_model(module)