# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint class AlexNet(nn.Module): """AlexNet backbone. Args: num_classes (int): number of classes for classification. """ def __init__(self, num_classes: int = -1): super().__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) if self.num_classes > 0: self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def init_weights(self, pretrained: Optional[str] = None) -> None: if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: # use default initializer pass else: raise TypeError('pretrained must be a str or None') def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) if self.num_classes > 0: x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) return x