# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501 Wrap some nn modules to support empty tensor input. Currently, these wrappers are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask heads are trained on only positive RoIs. """ import math import torch import torch.nn as nn from mmengine.registry import MODELS from torch.nn.modules.utils import _pair, _triple if torch.__version__ == 'parrots': TORCH_VERSION = torch.__version__ else: # torch.__version__ could be 1.3.1+cu92, we only need the first two # for comparison TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2]) def obsolete_torch_version(torch_version, version_threshold) -> bool: return torch_version == 'parrots' or torch_version <= version_threshold class NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor, new_shape: tuple) -> torch.Tensor: ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad: torch.Tensor) -> tuple: shape = ctx.shape return NewEmptyTensorOp.apply(grad, shape), None @MODELS.register_module('Conv', force=True) class Conv2d(nn.Conv2d): def forward(self, x: torch.Tensor) -> torch.Tensor: if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: out_shape = [x.shape[0], self.out_channels] for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size, self.padding, self.stride, self.dilation): o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 out_shape.append(o) empty = NewEmptyTensorOp.apply(x, out_shape) if self.training: # produce dummy gradient to avoid DDP warning. dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + dummy else: return empty return super().forward(x) @MODELS.register_module('Conv3d', force=True) class Conv3d(nn.Conv3d): def forward(self, x: torch.Tensor) -> torch.Tensor: if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: out_shape = [x.shape[0], self.out_channels] for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size, self.padding, self.stride, self.dilation): o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 out_shape.append(o) empty = NewEmptyTensorOp.apply(x, out_shape) if self.training: # produce dummy gradient to avoid DDP warning. dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + dummy else: return empty return super().forward(x) @MODELS.register_module() @MODELS.register_module('deconv') class ConvTranspose2d(nn.ConvTranspose2d): def forward(self, x: torch.Tensor) -> torch.Tensor: if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: out_shape = [x.shape[0], self.out_channels] for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size, self.padding, self.stride, self.dilation, self.output_padding): out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) empty = NewEmptyTensorOp.apply(x, out_shape) if self.training: # produce dummy gradient to avoid DDP warning. dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + dummy else: return empty return super().forward(x) @MODELS.register_module() @MODELS.register_module('deconv3d') class ConvTranspose3d(nn.ConvTranspose3d): def forward(self, x: torch.Tensor) -> torch.Tensor: if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: out_shape = [x.shape[0], self.out_channels] for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size, self.padding, self.stride, self.dilation, self.output_padding): out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) empty = NewEmptyTensorOp.apply(x, out_shape) if self.training: # produce dummy gradient to avoid DDP warning. dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + dummy else: return empty return super().forward(x) class MaxPool2d(nn.MaxPool2d): def forward(self, x: torch.Tensor) -> torch.Tensor: # PyTorch 1.9 does not support empty tensor inference yet if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0: out_shape = list(x.shape[:2]) for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size), _pair(self.padding), _pair(self.stride), _pair(self.dilation)): o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 o = math.ceil(o) if self.ceil_mode else math.floor(o) out_shape.append(o) empty = NewEmptyTensorOp.apply(x, out_shape) return empty return super().forward(x) class MaxPool3d(nn.MaxPool3d): def forward(self, x: torch.Tensor) -> torch.Tensor: # PyTorch 1.9 does not support empty tensor inference yet if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0: out_shape = list(x.shape[:2]) for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size), _triple(self.padding), _triple(self.stride), _triple(self.dilation)): o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 o = math.ceil(o) if self.ceil_mode else math.floor(o) out_shape.append(o) empty = NewEmptyTensorOp.apply(x, out_shape) return empty return super().forward(x) class Linear(torch.nn.Linear): def forward(self, x: torch.Tensor) -> torch.Tensor: # empty tensor forward of Linear layer is supported in Pytorch 1.6 if obsolete_torch_version(TORCH_VERSION, (1, 5)) and x.numel() == 0: out_shape = [x.shape[0], self.out_features] empty = NewEmptyTensorOp.apply(x, out_shape) if self.training: # produce dummy gradient to avoid DDP warning. dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + dummy else: return empty return super().forward(x)