# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Sequence, Union import mmengine import numpy as np import torch from .base import BaseTransform from .builder import TRANSFORMS def to_tensor( data: Union[torch.Tensor, np.ndarray, Sequence, int, float]) -> torch.Tensor: """Convert objects of various python types to :obj:`torch.Tensor`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int` and :class:`float`. Args: data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to be converted. Returns: torch.Tensor: the converted data. """ if isinstance(data, torch.Tensor): return data elif isinstance(data, np.ndarray): return torch.from_numpy(data) elif isinstance(data, Sequence) and not mmengine.is_str(data): return torch.tensor(data) elif isinstance(data, int): return torch.LongTensor([data]) elif isinstance(data, float): return torch.FloatTensor([data]) else: raise TypeError(f'type {type(data)} cannot be converted to tensor.') @TRANSFORMS.register_module() class ToTensor(BaseTransform): """Convert some results to :obj:`torch.Tensor` by given keys. Required keys: - all these keys in `keys` Modified Keys: - all these keys in `keys` Args: keys (Sequence[str]): Keys that need to be converted to Tensor. """ def __init__(self, keys: Sequence[str]) -> None: self.keys = keys def transform(self, results: dict) -> dict: """Transform function to convert data to `torch.Tensor`. Args: results (dict): Result dict from loading pipeline. Returns: dict: `keys` in results will be updated. """ for key in self.keys: key_list = key.split('.') cur_item = results for i in range(len(key_list)): if key_list[i] not in cur_item: raise KeyError(f'Can not find key {key}') if i == len(key_list) - 1: cur_item[key_list[i]] = to_tensor(cur_item[key_list[i]]) break cur_item = cur_item[key_list[i]] return results def __repr__(self) -> str: return self.__class__.__name__ + f'(keys={self.keys})' @TRANSFORMS.register_module() class ImageToTensor(BaseTransform): """Convert image to :obj:`torch.Tensor` by given keys. The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W). Required keys: - all these keys in `keys` Modified Keys: - all these keys in `keys` Args: keys (Sequence[str]): Key of images to be converted to Tensor. """ def __init__(self, keys: dict) -> None: self.keys = keys def transform(self, results: dict) -> dict: """Transform function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:``torch.Tensor`` and transposed to (C, H, W) order. """ for key in self.keys: img = results[key] if len(img.shape) < 3: img = np.expand_dims(img, -1) results[key] = (to_tensor(img.transpose(2, 0, 1))).contiguous() return results def __repr__(self) -> str: return self.__class__.__name__ + f'(keys={self.keys})'