# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from mmdet.registry import MODELS from mmdet.utils import OptMultiConfig @MODELS.register_module() class CTResNetNeck(BaseModule): """The neck used in `CenterNet `_ for object classification and box regression. Args: in_channels (int): Number of input channels. num_deconv_filters (tuple[int]): Number of filters per stage. num_deconv_kernels (tuple[int]): Number of kernels per stage. use_dcn (bool): If True, use DCNv2. Defaults to True. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`], optional): Initialization config dict. """ def __init__(self, in_channels: int, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...], use_dcn: bool = True, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) assert len(num_deconv_filters) == len(num_deconv_kernels) self.fp16_enabled = False self.use_dcn = use_dcn self.in_channels = in_channels self.deconv_layers = self._make_deconv_layer(num_deconv_filters, num_deconv_kernels) def _make_deconv_layer( self, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...]) -> nn.Sequential: """use deconv layers to upsample backbone's output.""" layers = [] for i in range(len(num_deconv_filters)): feat_channels = num_deconv_filters[i] conv_module = ConvModule( self.in_channels, feat_channels, 3, padding=1, conv_cfg=dict(type='DCNv2') if self.use_dcn else None, norm_cfg=dict(type='BN')) layers.append(conv_module) upsample_module = ConvModule( feat_channels, feat_channels, num_deconv_kernels[i], stride=2, padding=1, conv_cfg=dict(type='deconv'), norm_cfg=dict(type='BN')) layers.append(upsample_module) self.in_channels = feat_channels return nn.Sequential(*layers) def init_weights(self) -> None: """Initialize the parameters.""" for m in self.modules(): if isinstance(m, nn.ConvTranspose2d): # In order to be consistent with the source code, # reset the ConvTranspose2d initialization parameters m.reset_parameters() # Simulated bilinear upsampling kernel w = m.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * ( 1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # self.use_dcn is False elif not self.use_dcn and isinstance(m, nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x: Sequence[torch.Tensor]) -> Tuple[torch.Tensor]: """model forward.""" assert isinstance(x, (list, tuple)) outs = self.deconv_layers(x[-1]) return outs,