# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import contextlib import sys import time import torch if sys.version_info >= (3, 7): @contextlib.contextmanager def profile_time(trace_name, name, enabled=True, stream=None, end_stream=None): """Print time spent by CPU and GPU. Useful as a temporary context manager to find sweet spots of code suitable for async implementation. """ if (not enabled) or not torch.cuda.is_available(): yield return stream = stream if stream else torch.cuda.current_stream() end_stream = end_stream if end_stream else stream start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) stream.record_event(start) try: cpu_start = time.monotonic() yield finally: cpu_end = time.monotonic() end_stream.record_event(end) end.synchronize() cpu_time = (cpu_end - cpu_start) * 1000 gpu_time = start.elapsed_time(end) msg = f'{trace_name} {name} cpu_time {cpu_time:.2f} ms ' msg += f'gpu_time {gpu_time:.2f} ms stream {stream}' print(msg, end_stream)