# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Union import torch from torch.nn.parallel import DataParallel, DistributedDataParallel from mmengine.optim import OptimWrapper from mmengine.registry import MODEL_WRAPPERS from ..utils import detect_anomalous_params MODEL_WRAPPERS.register_module(module=DistributedDataParallel) MODEL_WRAPPERS.register_module(module=DataParallel) @MODEL_WRAPPERS.register_module() class MMDistributedDataParallel(DistributedDataParallel): """A distributed model wrapper used for training,testing and validation in loop. Different from DistributedDataParallel, MMDistributedDataParallel implements three methods :meth:`train_step`, :meth:`val_step` and :meth:`test_step`, which will be called by ``train_loop``, ``val_loop`` and ``test_loop``. - ``train_step``: Called by ``runner.train_loop``, and implement default model forward, gradient back propagation, parameter updating logic. To take advantage of DistributedDataParallel's automatic gradient synchronization, ``train_step`` calls ``DistributedDataParallel.forward`` to calculate the losses, and call other methods of :class:`BaseModel` to pre-process data and parse losses. Finally, update model parameters by :class:`OptimWrapper` and return the loss dictionary used for logging. - ``val_step``: Called by ``runner.val_loop`` and get the inference results. Since there is no gradient synchronization requirement, this procedure is equivalent to ``BaseModel.val_step`` - ``test_step``: Called by ``runner.test_loop``, equivalent ``val_step``. Args: detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with `loss` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. **kwargs: keyword arguments passed to ``DistributedDataParallel``. - device_ids (List[int] or torch.device, optional): CUDA devices for module. - output_device (int or torch.device, optional): Device location of output for single-device CUDA modules. - dim (int): Defaults to 0. - broadcast_buffers (bool): Flag that enables syncing ( broadcasting) buffers of the module at beginning of the ``forward`` function. Defaults to True - find_unused_parameters (bool): Whether to find parameters of module, which are not in the forward graph. Defaults to False. - process_group (ProcessGroup, optional): The process group to be used for distributed data all-reduction. - bucket_cap_mb (int): bucket size in MegaBytes (MB). Defaults to 25. - check_reduction (bool): This argument is deprecated. Defaults to False. - gradient_as_bucket_view (bool): Defaults to False. - static_graph (bool): Defaults to False. See more information about arguments in :class:`torch.nn.parallel.DistributedDataParallel`. Note: If model has multiple submodules and each module has separate optimization strategies, :class:`MMSeparateDistributedDataParallel` should be used to wrap the model. Note: If model itself has custom optimization strategy, rather than simply forward model and update model. A custom model wrapper inherit from ``MMDistributedDataParallel`` should be defined and override the ``train_step`` method. """ def __init__(self, module, detect_anomalous_params: bool = False, **kwargs): super().__init__(module=module, **kwargs) self.detect_anomalous_params = detect_anomalous_params def train_step(self, data: Union[dict, tuple, list], optim_wrapper: OptimWrapper) -> Dict[str, torch.Tensor]: """Interface for model forward, backward and parameters updating during training process. :meth:`train_step` will perform the following steps in order: - If :attr:`module` defines the preprocess method, call ``module.preprocess`` to pre-processing data. - Call ``module.forward(**data)`` and get losses. - Parse losses. - Call ``optim_wrapper.optimizer_step`` to update parameters. - Return log messages of losses. Args: data (dict or tuple or list): Data sampled from dataset. optim_wrapper (OptimWrapper): A wrapper of optimizer to update parameters. Returns: Dict[str, torch.Tensor]: A ``dict`` of tensor for logging. """ # Enable automatic mixed precision training context. with optim_wrapper.optim_context(self): data = self.module.data_preprocessor(data, training=True) losses = self._run_forward(data, mode='loss') preds = None masks = None ## for mmpretrain if isinstance(losses, tuple) and len(losses) == 3: losses, preds, masks = losses ## for mmpose and mmseg elif isinstance(losses, tuple) and len(losses) == 2: losses, preds = losses parsed_loss, log_vars = self.module.parse_losses(losses) optim_wrapper.update_params(parsed_loss) if self.detect_anomalous_params: detect_anomalous_params(parsed_loss, model=self) ## mmpretrain if preds is not None and masks is not None: log_vars['vis_preds'] = preds log_vars['vis_masks'] = masks ## mmpose and mmseg elif preds is not None: log_vars['vis_preds'] = preds return log_vars def val_step(self, data: Union[dict, tuple, list]) -> list: """Gets the prediction of module during validation process. Args: data (dict or tuple or list): Data sampled from dataset. Returns: list: The predictions of given data. """ return self.module.val_step(data) def test_step(self, data: Union[dict, tuple, list]) -> list: """Gets the predictions of module during testing process. Args: data (dict or tuple or list): Data sampled from dataset. Returns: list: The predictions of given data. """ return self.module.test_step(data) def _run_forward(self, data: Union[dict, tuple, list], mode: str) -> Any: """Unpacks data for :meth:`forward` Args: data (dict or tuple or list): Data sampled from dataset. mode (str): Mode of forward. Returns: dict or list: Results of training or testing mode. """ if isinstance(data, dict): results = self(**data, mode=mode) elif isinstance(data, (list, tuple)): results = self(*data, mode=mode) else: raise TypeError('Output of `data_preprocessor` should be ' f'list, tuple or dict, but got {type(data)}') return results