# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch import torch.nn as nn import torch.nn.functional as F from mmengine.registry import MODELS from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION for module in [ nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU, nn.Sigmoid, nn.Tanh ]: MODELS.register_module(module=module) if digit_version(torch.__version__) >= digit_version('1.7.0'): MODELS.register_module(module=nn.SiLU, name='SiLU') else: class SiLU(nn.Module): """Sigmoid Weighted Liner Unit.""" def __init__(self, inplace=False): super().__init__() self.inplace = inplace def forward(self, inputs) -> torch.Tensor: if self.inplace: return inputs.mul_(torch.sigmoid(inputs)) else: return inputs * torch.sigmoid(inputs) MODELS.register_module(module=SiLU, name='SiLU') @MODELS.register_module(name='Clip') @MODELS.register_module() class Clamp(nn.Module): """Clamp activation layer. This activation function is to clamp the feature map value within :math:`[min, max]`. More details can be found in ``torch.clamp()``. Args: min (Number | optional): Lower-bound of the range to be clamped to. Default to -1. max (Number | optional): Upper-bound of the range to be clamped to. Default to 1. """ def __init__(self, min: float = -1., max: float = 1.): super().__init__() self.min = min self.max = max def forward(self, x) -> torch.Tensor: """Forward function. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: Clamped tensor. """ return torch.clamp(x, min=self.min, max=self.max) class GELU(nn.Module): r"""Applies the Gaussian Error Linear Units function: .. math:: \text{GELU}(x) = x * \Phi(x) where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/GELU.png Examples:: >>> m = nn.GELU() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: torch.Tensor) -> torch.Tensor: return F.gelu(input) if (TORCH_VERSION == 'parrots' or digit_version(TORCH_VERSION) < digit_version('1.4')): MODELS.register_module(module=GELU) else: MODELS.register_module(module=nn.GELU) def build_activation_layer(cfg: Dict) -> nn.Module: """Build activation layer. Args: cfg (dict): The activation layer config, which should contain: - type (str): Layer type. - layer args: Args needed to instantiate an activation layer. Returns: nn.Module: Created activation layer. """ return MODELS.build(cfg)