# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os.path as osp from typing import Callable, List, Optional, Sequence, Union from mmdet.registry import DATASETS from .api_wrappers import COCOPanoptic from .coco import CocoDataset @DATASETS.register_module() class CocoPanopticDataset(CocoDataset): """Coco dataset for Panoptic segmentation. The annotation format is shown as follows. The `ann` field is optional for testing. .. code-block:: none [ { 'filename': f'{image_id:012}.png', 'image_id':9 'segments_info': [ { 'id': 8345037, (segment_id in panoptic png, convert from rgb) 'category_id': 51, 'iscrowd': 0, 'bbox': (x1, y1, w, h), 'area': 24315 }, ... ] }, ... ] Args: ann_file (str): Annotation file path. Defaults to ''. metainfo (dict, optional): Meta information for dataset, such as class information. Defaults to None. data_root (str, optional): The root directory for ``data_prefix`` and ``ann_file``. Defaults to None. data_prefix (dict, optional): Prefix for training data. Defaults to ``dict(img=None, ann=None, seg=None)``. The prefix ``seg`` which is for panoptic segmentation map must be not None. filter_cfg (dict, optional): Config for filter data. Defaults to None. indices (int or Sequence[int], optional): Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Defaults to None which means using all ``data_infos``. serialize_data (bool, optional): Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Defaults to True. pipeline (list, optional): Processing pipeline. Defaults to []. test_mode (bool, optional): ``test_mode=True`` means in test phase. Defaults to False. lazy_init (bool, optional): Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file. ``Basedataset`` can skip load annotations to save time by set ``lazy_init=False``. Defaults to False. max_refetch (int, optional): If ``Basedataset.prepare_data`` get a None img. The maximum extra number of cycles to get a valid image. Defaults to 1000. """ METAINFO = { 'classes': ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other', 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', 'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged', 'food-other-merged', 'building-other-merged', 'rock-merged', 'wall-other-merged', 'rug-merged'), 'thing_classes': ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'), 'stuff_classes': ('banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other', 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', 'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged', 'food-other-merged', 'building-other-merged', 'rock-merged', 'wall-other-merged', 'rug-merged'), 'palette': [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174), (255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122), (191, 162, 208), (255, 255, 128), (147, 211, 203), (150, 100, 100), (168, 171, 172), (146, 112, 198), (210, 170, 100), (92, 136, 89), (218, 88, 184), (241, 129, 0), (217, 17, 255), (124, 74, 181), (70, 70, 70), (255, 228, 255), (154, 208, 0), (193, 0, 92), (76, 91, 113), (255, 180, 195), (106, 154, 176), (230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55), (254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255), (104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74), (135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149), (183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153), (146, 139, 141), (70, 130, 180), (134, 199, 156), (209, 226, 140), (96, 36, 108), (96, 96, 96), (64, 170, 64), (152, 251, 152), (208, 229, 228), (206, 186, 171), (152, 161, 64), (116, 112, 0), (0, 114, 143), (102, 102, 156), (250, 141, 255)] } COCOAPI = COCOPanoptic # ann_id is not unique in coco panoptic dataset. ANN_ID_UNIQUE = False def __init__(self, ann_file: str = '', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = dict(img=None, ann=None, seg=None), filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000, backend_args: dict = None, **kwargs) -> None: super().__init__( ann_file=ann_file, metainfo=metainfo, data_root=data_root, data_prefix=data_prefix, filter_cfg=filter_cfg, indices=indices, serialize_data=serialize_data, pipeline=pipeline, test_mode=test_mode, lazy_init=lazy_init, max_refetch=max_refetch, backend_args=backend_args, **kwargs) def parse_data_info(self, raw_data_info: dict) -> dict: """Parse raw annotation to target format. Args: raw_data_info (dict): Raw data information load from ``ann_file``. Returns: dict: Parsed annotation. """ img_info = raw_data_info['raw_img_info'] ann_info = raw_data_info['raw_ann_info'] # filter out unmatched annotations which have # same segment_id but belong to other image ann_info = [ ann for ann in ann_info if ann['image_id'] == img_info['img_id'] ] data_info = {} img_path = osp.join(self.data_prefix['img'], img_info['file_name']) if self.data_prefix.get('seg', None): seg_map_path = osp.join( self.data_prefix['seg'], img_info['file_name'].replace('jpg', 'png')) else: seg_map_path = None data_info['img_path'] = img_path data_info['img_id'] = img_info['img_id'] data_info['seg_map_path'] = seg_map_path data_info['height'] = img_info['height'] data_info['width'] = img_info['width'] if self.return_classes: data_info['text'] = self.metainfo['thing_classes'] data_info['stuff_text'] = self.metainfo['stuff_classes'] data_info['custom_entities'] = True # no important instances = [] segments_info = [] for ann in ann_info: instance = {} x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w, y1 + h] category_id = ann['category_id'] contiguous_cat_id = self.cat2label[category_id] is_thing = self.coco.load_cats(ids=category_id)[0]['isthing'] if is_thing: is_crowd = ann.get('iscrowd', False) instance['bbox'] = bbox instance['bbox_label'] = contiguous_cat_id if not is_crowd: instance['ignore_flag'] = 0 else: instance['ignore_flag'] = 1 is_thing = False segment_info = { 'id': ann['id'], 'category': contiguous_cat_id, 'is_thing': is_thing } segments_info.append(segment_info) if len(instance) > 0 and is_thing: instances.append(instance) data_info['instances'] = instances data_info['segments_info'] = segments_info return data_info def filter_data(self) -> List[dict]: """Filter images too small or without ground truth. Returns: List[dict]: ``self.data_list`` after filtering. """ if self.test_mode: return self.data_list if self.filter_cfg is None: return self.data_list filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) min_size = self.filter_cfg.get('min_size', 0) ids_with_ann = set() # check whether images have legal thing annotations. for data_info in self.data_list: for segment_info in data_info['segments_info']: if not segment_info['is_thing']: continue ids_with_ann.add(data_info['img_id']) valid_data_list = [] for data_info in self.data_list: img_id = data_info['img_id'] width = data_info['width'] height = data_info['height'] if filter_empty_gt and img_id not in ids_with_ann: continue if min(width, height) >= min_size: valid_data_list.append(data_info) return valid_data_list