# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Sequence from torch.utils.data import BatchSampler, Sampler from mmdet.datasets.samplers.track_img_sampler import TrackImgSampler from mmdet.registry import DATA_SAMPLERS # TODO: maybe replace with a data_loader wrapper @DATA_SAMPLERS.register_module() class AspectRatioBatchSampler(BatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __init__(self, sampler: Sampler, batch_size: int, drop_last: bool = False) -> None: if not isinstance(sampler, Sampler): raise TypeError('sampler should be an instance of ``Sampler``, ' f'but got {sampler}') if not isinstance(batch_size, int) or batch_size <= 0: raise ValueError('batch_size should be a positive integer value, ' f'but got batch_size={batch_size}') self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last # two groups for w < h and w >= h self._aspect_ratio_buckets = [[] for _ in range(2)] def __iter__(self) -> Sequence[int]: for idx in self.sampler: data_info = self.sampler.dataset.get_data_info(idx) width, height = data_info['width'], data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:] def __len__(self) -> int: if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size @DATA_SAMPLERS.register_module() class TrackAspectRatioBatchSampler(AspectRatioBatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __iter__(self) -> Sequence[int]: for idx in self.sampler: # hard code to solve TrackImgSampler if isinstance(self.sampler, TrackImgSampler): video_idx, _ = idx else: video_idx = idx # video_idx data_info = self.sampler.dataset.get_data_info(video_idx) # data_info {video_id, images, video_length} img_data_info = data_info['images'][0] width, height = img_data_info['width'], img_data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:] @DATA_SAMPLERS.register_module() class MultiDataAspectRatioBatchSampler(BatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch for multi-source datasets. Args: sampler (Sampler): Base sampler. batch_size (Sequence(int)): Size of mini-batch for multi-source datasets. num_datasets(int): Number of multi-source datasets. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __init__(self, sampler: Sampler, batch_size: Sequence[int], num_datasets: int, drop_last: bool = True) -> None: if not isinstance(sampler, Sampler): raise TypeError('sampler should be an instance of ``Sampler``, ' f'but got {sampler}') self.sampler = sampler self.batch_size = batch_size self.num_datasets = num_datasets self.drop_last = drop_last # two groups for w < h and w >= h for each dataset --> 2 * num_datasets self._buckets = [[] for _ in range(2 * self.num_datasets)] def __iter__(self) -> Sequence[int]: for idx in self.sampler: data_info = self.sampler.dataset.get_data_info(idx) width, height = data_info['width'], data_info['height'] dataset_source_idx = self.sampler.dataset.get_dataset_source(idx) aspect_ratio_bucket_id = 0 if width < height else 1 bucket_id = dataset_source_idx * 2 + aspect_ratio_bucket_id bucket = self._buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size[dataset_source_idx]: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket for i in range(self.num_datasets): left_data = self._buckets[i * 2 + 0] + self._buckets[i * 2 + 1] while len(left_data) > 0: if len(left_data) <= self.batch_size[i]: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size[i]] left_data = left_data[self.batch_size[i]:] self._buckets = [[] for _ in range(2 * self.num_datasets)] def __len__(self) -> int: sizes = [0 for _ in range(self.num_datasets)] for idx in self.sampler: dataset_source_idx = self.sampler.dataset.get_dataset_source(idx) sizes[dataset_source_idx] += 1 if self.drop_last: lens = 0 for i in range(self.num_datasets): lens += sizes[i] // self.batch_size[i] return lens else: lens = 0 for i in range(self.num_datasets): lens += (sizes[i] + self.batch_size[i] - 1) // self.batch_size[i] return lens