# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Tuple, Union import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import OptConfigType, OptMultiConfig @MODELS.register_module() class ChannelMapper(BaseModule): """Channel Mapper to reduce/increase channels of backbone features. This is used to reduce/increase channels of backbone features. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). kernel_size (int, optional): kernel_size for reducing channels (used at each scale). Default: 3. conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for convolution layer. Default: None. norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for normalization layer. Default: None. act_cfg (:obj:`ConfigDict` or dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". num_outs (int, optional): Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels. init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or dict], optional): Initialization config dict. Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = ChannelMapper(in_channels, 11, 3).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__( self, in_channels: List[int], out_channels: int, kernel_size: int = 3, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, act_cfg: OptConfigType = dict(type='ReLU'), bias: Union[bool, str] = 'auto', num_outs: int = None, init_cfg: OptMultiConfig = dict( type='Xavier', layer='Conv2d', distribution='uniform') ) -> None: super().__init__(init_cfg=init_cfg) assert isinstance(in_channels, list) self.extra_convs = None if num_outs is None: num_outs = len(in_channels) self.convs = nn.ModuleList() for in_channel in in_channels: self.convs.append( ConvModule( in_channel, out_channels, kernel_size, padding=(kernel_size - 1) // 2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=bias)) if num_outs > len(in_channels): self.extra_convs = nn.ModuleList() for i in range(len(in_channels), num_outs): if i == len(in_channels): in_channel = in_channels[-1] else: in_channel = out_channels self.extra_convs.append( ConvModule( in_channel, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=bias)) def forward(self, inputs: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function.""" assert len(inputs) == len(self.convs) outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] if self.extra_convs: for i in range(len(self.extra_convs)): if i == 0: outs.append(self.extra_convs[0](inputs[-1])) else: outs.append(self.extra_convs[i](outs[-1])) return tuple(outs)