# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Tuple import torch.nn.functional as F from torch import Tensor from mmdet.registry import MODELS from .fpn import FPN @MODELS.register_module() class FPN_DropBlock(FPN): def __init__(self, *args, plugin: Optional[dict] = dict( type='DropBlock', drop_prob=0.3, block_size=3, warmup_iters=0), **kwargs) -> None: super().__init__(*args, **kwargs) self.plugin = None if plugin is not None: self.plugin = MODELS.build(plugin) def forward(self, inputs: Tuple[Tensor]) -> tuple: """Forward function. Args: inputs (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Feature maps, each is a 4D-tensor. """ assert len(inputs) == len(self.in_channels) # build laterals laterals = [ lateral_conv(inputs[i + self.start_level]) for i, lateral_conv in enumerate(self.lateral_convs) ] # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): # In some cases, fixing `scale factor` (e.g. 2) is preferred, but # it cannot co-exist with `size` in `F.interpolate`. if 'scale_factor' in self.upsample_cfg: # fix runtime error of "+=" inplace operation in PyTorch 1.10 laterals[i - 1] = laterals[i - 1] + F.interpolate( laterals[i], **self.upsample_cfg) else: prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + F.interpolate( laterals[i], size=prev_shape, **self.upsample_cfg) if self.plugin is not None: laterals[i - 1] = self.plugin(laterals[i - 1]) # build outputs # part 1: from original levels outs = [ self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) ] # part 2: add extra levels if self.num_outs > len(outs): # use max pool to get more levels on top of outputs # (e.g., Faster R-CNN, Mask R-CNN) if not self.add_extra_convs: for i in range(self.num_outs - used_backbone_levels): outs.append(F.max_pool2d(outs[-1], 1, stride=2)) # add conv layers on top of original feature maps (RetinaNet) else: if self.add_extra_convs == 'on_input': extra_source = inputs[self.backbone_end_level - 1] elif self.add_extra_convs == 'on_lateral': extra_source = laterals[-1] elif self.add_extra_convs == 'on_output': extra_source = outs[-1] else: raise NotImplementedError outs.append(self.fpn_convs[used_backbone_levels](extra_source)) for i in range(used_backbone_levels + 1, self.num_outs): if self.relu_before_extra_convs: outs.append(self.fpn_convs[i](F.relu(outs[-1]))) else: outs.append(self.fpn_convs[i](outs[-1])) return tuple(outs)