# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from mmcv.cnn import build_activation_layer, build_norm_layer from mmengine.model import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class FcModule(BaseModule): """Fully-connected layer module. Args: in_channels (int): Input channels. out_channels (int): Ourput channels. norm_cfg (dict, optional): Configuration of normlization method after fc. Defaults to None. act_cfg (dict, optional): Configuration of activation method after fc. Defaults to dict(type='ReLU'). inplace (bool, optional): Whether inplace the activatation module. Defaults to True. init_cfg (dict, optional): Initialization config dict. Defaults to dict(type='Kaiming', layer='Linear'). """ def __init__(self, in_channels: int, out_channels: int, norm_cfg: dict = None, act_cfg: dict = dict(type='ReLU'), inplace: bool = True, init_cfg=dict(type='Kaiming', layer='Linear')): super(FcModule, self).__init__(init_cfg) assert norm_cfg is None or isinstance(norm_cfg, dict) assert act_cfg is None or isinstance(act_cfg, dict) self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.inplace = inplace self.with_norm = norm_cfg is not None self.with_activation = act_cfg is not None self.fc = nn.Linear(in_channels, out_channels) # build normalization layers if self.with_norm: self.norm_name, norm = build_norm_layer(norm_cfg, out_channels) self.add_module(self.norm_name, norm) # build activation layer if self.with_activation: act_cfg_ = act_cfg.copy() # nn.Tanh has no 'inplace' argument if act_cfg_['type'] not in [ 'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish' ]: act_cfg_.setdefault('inplace', inplace) self.activate = build_activation_layer(act_cfg_) @property def norm(self): """Normalization.""" return getattr(self, self.norm_name) def forward(self, x, activate=True, norm=True): """Model forward.""" x = self.fc(x) if norm and self.with_norm: x = self.norm(x) if activate and self.with_activation: x = self.activate(x) return x