# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import time from functools import partial from typing import List, Optional, Union import numpy as np import torch import torch.nn as nn from mmcv.cnn import fuse_conv_bn # TODO need update # from mmcv.runner import wrap_fp16_model from mmengine import MMLogger from mmengine.config import Config from mmengine.device import get_max_cuda_memory from mmengine.dist import get_world_size from mmengine.runner import Runner, load_checkpoint from mmengine.utils.dl_utils import set_multi_processing from torch.nn.parallel import DistributedDataParallel from mmdet.registry import DATASETS, MODELS try: import psutil except ImportError: psutil = None def custom_round(value: Union[int, float], factor: Union[int, float], precision: int = 2) -> float: """Custom round function.""" return round(value / factor, precision) gb_round = partial(custom_round, factor=1024**3) def print_log(msg: str, logger: Optional[MMLogger] = None) -> None: """Print a log message.""" if logger is None: print(msg, flush=True) else: logger.info(msg) def print_process_memory(p: psutil.Process, logger: Optional[MMLogger] = None) -> None: """print process memory info.""" mem_used = gb_round(psutil.virtual_memory().used) memory_full_info = p.memory_full_info() uss_mem = gb_round(memory_full_info.uss) if hasattr(memory_full_info, 'pss'): pss_mem = gb_round(memory_full_info.pss) for children in p.children(): child_mem_info = children.memory_full_info() uss_mem += gb_round(child_mem_info.uss) if hasattr(child_mem_info, 'pss'): pss_mem += gb_round(child_mem_info.pss) process_count = 1 + len(p.children()) log_msg = f'(GB) mem_used: {mem_used:.2f} | uss: {uss_mem:.2f} | ' if hasattr(memory_full_info, 'pss'): log_msg += f'pss: {pss_mem:.2f} | ' log_msg += f'total_proc: {process_count}' print_log(log_msg, logger) class BaseBenchmark: """The benchmark base class. The ``run`` method is an external calling interface, and it will call the ``run_once`` method ``repeat_num`` times for benchmarking. Finally, call the ``average_multiple_runs`` method to further process the results of multiple runs. Args: max_iter (int): maximum iterations of benchmark. log_interval (int): interval of logging. num_warmup (int): Number of Warmup. logger (MMLogger, optional): Formatted logger used to record messages. """ def __init__(self, max_iter: int, log_interval: int, num_warmup: int, logger: Optional[MMLogger] = None): self.max_iter = max_iter self.log_interval = log_interval self.num_warmup = num_warmup self.logger = logger def run(self, repeat_num: int = 1) -> dict: """benchmark entry method. Args: repeat_num (int): Number of repeat benchmark. Defaults to 1. """ assert repeat_num >= 1 results = [] for _ in range(repeat_num): results.append(self.run_once()) results = self.average_multiple_runs(results) return results def run_once(self) -> dict: """Executes the benchmark once.""" raise NotImplementedError() def average_multiple_runs(self, results: List[dict]) -> dict: """Average the results of multiple runs.""" raise NotImplementedError() class InferenceBenchmark(BaseBenchmark): """The inference benchmark class. It will be statistical inference FPS, CUDA memory and CPU memory information. Args: cfg (mmengine.Config): config. checkpoint (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. distributed (bool): distributed testing flag. is_fuse_conv_bn (bool): Whether to fuse conv and bn, this will slightly increase the inference speed. max_iter (int): maximum iterations of benchmark. Defaults to 2000. log_interval (int): interval of logging. Defaults to 50. num_warmup (int): Number of Warmup. Defaults to 5. logger (MMLogger, optional): Formatted logger used to record messages. """ def __init__(self, cfg: Config, checkpoint: str, distributed: bool, is_fuse_conv_bn: bool, max_iter: int = 2000, log_interval: int = 50, num_warmup: int = 5, logger: Optional[MMLogger] = None): super().__init__(max_iter, log_interval, num_warmup, logger) assert get_world_size( ) == 1, 'Inference benchmark does not allow distributed multi-GPU' self.cfg = copy.deepcopy(cfg) self.distributed = distributed if psutil is None: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') self._process = psutil.Process() env_cfg = self.cfg.get('env_cfg') if env_cfg.get('cudnn_benchmark'): torch.backends.cudnn.benchmark = True mp_cfg: dict = env_cfg.get('mp_cfg', {}) set_multi_processing(**mp_cfg, distributed=self.distributed) print_log('before build: ', self.logger) print_process_memory(self._process, self.logger) self.model = self._init_model(checkpoint, is_fuse_conv_bn) # Because multiple processes will occupy additional CPU resources, # FPS statistics will be more unstable when num_workers is not 0. # It is reasonable to set num_workers to 0. dataloader_cfg = cfg.test_dataloader dataloader_cfg['num_workers'] = 0 dataloader_cfg['batch_size'] = 1 dataloader_cfg['persistent_workers'] = False self.data_loader = Runner.build_dataloader(dataloader_cfg) print_log('after build: ', self.logger) print_process_memory(self._process, self.logger) def _init_model(self, checkpoint: str, is_fuse_conv_bn: bool) -> nn.Module: """Initialize the model.""" model = MODELS.build(self.cfg.model) # TODO need update # fp16_cfg = self.cfg.get('fp16', None) # if fp16_cfg is not None: # wrap_fp16_model(model) load_checkpoint(model, checkpoint, map_location='cpu') if is_fuse_conv_bn: model = fuse_conv_bn(model) model = model.cuda() if self.distributed: model = DistributedDataParallel( model, device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=False) model.eval() return model def run_once(self) -> dict: """Executes the benchmark once.""" pure_inf_time = 0 fps = 0 for i, data in enumerate(self.data_loader): if (i + 1) % self.log_interval == 0: print_log('==================================', self.logger) torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): self.model.test_step(data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= self.num_warmup: pure_inf_time += elapsed if (i + 1) % self.log_interval == 0: fps = (i + 1 - self.num_warmup) / pure_inf_time cuda_memory = get_max_cuda_memory() print_log( f'Done image [{i + 1:<3}/{self.max_iter}], ' f'fps: {fps:.1f} img/s, ' f'times per image: {1000 / fps:.1f} ms/img, ' f'cuda memory: {cuda_memory} MB', self.logger) print_process_memory(self._process, self.logger) if (i + 1) == self.max_iter: fps = (i + 1 - self.num_warmup) / pure_inf_time break return {'fps': fps} def average_multiple_runs(self, results: List[dict]) -> dict: """Average the results of multiple runs.""" print_log('============== Done ==================', self.logger) fps_list_ = [round(result['fps'], 1) for result in results] avg_fps_ = sum(fps_list_) / len(fps_list_) outputs = {'avg_fps': avg_fps_, 'fps_list': fps_list_} if len(fps_list_) > 1: times_pre_image_list_ = [ round(1000 / result['fps'], 1) for result in results ] avg_times_pre_image_ = sum(times_pre_image_list_) / len( times_pre_image_list_) print_log( f'Overall fps: {fps_list_}[{avg_fps_:.1f}] img/s, ' 'times per image: ' f'{times_pre_image_list_}[{avg_times_pre_image_:.1f}] ' 'ms/img', self.logger) else: print_log( f'Overall fps: {fps_list_[0]:.1f} img/s, ' f'times per image: {1000 / fps_list_[0]:.1f} ms/img', self.logger) print_log(f'cuda memory: {get_max_cuda_memory()} MB', self.logger) print_process_memory(self._process, self.logger) return outputs class DataLoaderBenchmark(BaseBenchmark): """The dataloader benchmark class. It will be statistical inference FPS and CPU memory information. Args: cfg (mmengine.Config): config. distributed (bool): distributed testing flag. dataset_type (str): benchmark data type, only supports ``train``, ``val`` and ``test``. max_iter (int): maximum iterations of benchmark. Defaults to 2000. log_interval (int): interval of logging. Defaults to 50. num_warmup (int): Number of Warmup. Defaults to 5. logger (MMLogger, optional): Formatted logger used to record messages. """ def __init__(self, cfg: Config, distributed: bool, dataset_type: str, max_iter: int = 2000, log_interval: int = 50, num_warmup: int = 5, logger: Optional[MMLogger] = None): super().__init__(max_iter, log_interval, num_warmup, logger) assert dataset_type in ['train', 'val', 'test'], \ 'dataset_type only supports train,' \ f' val and test, but got {dataset_type}' assert get_world_size( ) == 1, 'Dataloader benchmark does not allow distributed multi-GPU' self.cfg = copy.deepcopy(cfg) self.distributed = distributed if psutil is None: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') self._process = psutil.Process() mp_cfg = self.cfg.get('env_cfg', {}).get('mp_cfg') if mp_cfg is not None: set_multi_processing(distributed=self.distributed, **mp_cfg) else: set_multi_processing(distributed=self.distributed) print_log('before build: ', self.logger) print_process_memory(self._process, self.logger) if dataset_type == 'train': self.data_loader = Runner.build_dataloader(cfg.train_dataloader) elif dataset_type == 'test': self.data_loader = Runner.build_dataloader(cfg.test_dataloader) else: self.data_loader = Runner.build_dataloader(cfg.val_dataloader) self.batch_size = self.data_loader.batch_size self.num_workers = self.data_loader.num_workers print_log('after build: ', self.logger) print_process_memory(self._process, self.logger) def run_once(self) -> dict: """Executes the benchmark once.""" pure_inf_time = 0 fps = 0 # benchmark with 2000 image and take the average start_time = time.perf_counter() for i, data in enumerate(self.data_loader): elapsed = time.perf_counter() - start_time if (i + 1) % self.log_interval == 0: print_log('==================================', self.logger) if i >= self.num_warmup: pure_inf_time += elapsed if (i + 1) % self.log_interval == 0: fps = (i + 1 - self.num_warmup) / pure_inf_time print_log( f'Done batch [{i + 1:<3}/{self.max_iter}], ' f'fps: {fps:.1f} batch/s, ' f'times per batch: {1000 / fps:.1f} ms/batch, ' f'batch size: {self.batch_size}, num_workers: ' f'{self.num_workers}', self.logger) print_process_memory(self._process, self.logger) if (i + 1) == self.max_iter: fps = (i + 1 - self.num_warmup) / pure_inf_time break start_time = time.perf_counter() return {'fps': fps} def average_multiple_runs(self, results: List[dict]) -> dict: """Average the results of multiple runs.""" print_log('============== Done ==================', self.logger) fps_list_ = [round(result['fps'], 1) for result in results] avg_fps_ = sum(fps_list_) / len(fps_list_) outputs = {'avg_fps': avg_fps_, 'fps_list': fps_list_} if len(fps_list_) > 1: times_pre_image_list_ = [ round(1000 / result['fps'], 1) for result in results ] avg_times_pre_image_ = sum(times_pre_image_list_) / len( times_pre_image_list_) print_log( f'Overall fps: {fps_list_}[{avg_fps_:.1f}] img/s, ' 'times per batch: ' f'{times_pre_image_list_}[{avg_times_pre_image_:.1f}] ' f'ms/batch, batch size: {self.batch_size}, num_workers: ' f'{self.num_workers}', self.logger) else: print_log( f'Overall fps: {fps_list_[0]:.1f} batch/s, ' f'times per batch: {1000 / fps_list_[0]:.1f} ms/batch, ' f'batch size: {self.batch_size}, num_workers: ' f'{self.num_workers}', self.logger) print_process_memory(self._process, self.logger) return outputs class DatasetBenchmark(BaseBenchmark): """The dataset benchmark class. It will be statistical inference FPS, FPS pre transform and CPU memory information. Args: cfg (mmengine.Config): config. dataset_type (str): benchmark data type, only supports ``train``, ``val`` and ``test``. max_iter (int): maximum iterations of benchmark. Defaults to 2000. log_interval (int): interval of logging. Defaults to 50. num_warmup (int): Number of Warmup. Defaults to 5. logger (MMLogger, optional): Formatted logger used to record messages. """ def __init__(self, cfg: Config, dataset_type: str, max_iter: int = 2000, log_interval: int = 50, num_warmup: int = 5, logger: Optional[MMLogger] = None): super().__init__(max_iter, log_interval, num_warmup, logger) assert dataset_type in ['train', 'val', 'test'], \ 'dataset_type only supports train,' \ f' val and test, but got {dataset_type}' assert get_world_size( ) == 1, 'Dataset benchmark does not allow distributed multi-GPU' self.cfg = copy.deepcopy(cfg) if dataset_type == 'train': dataloader_cfg = copy.deepcopy(cfg.train_dataloader) elif dataset_type == 'test': dataloader_cfg = copy.deepcopy(cfg.test_dataloader) else: dataloader_cfg = copy.deepcopy(cfg.val_dataloader) dataset_cfg = dataloader_cfg.pop('dataset') dataset = DATASETS.build(dataset_cfg) if hasattr(dataset, 'full_init'): dataset.full_init() self.dataset = dataset def run_once(self) -> dict: """Executes the benchmark once.""" pure_inf_time = 0 fps = 0 total_index = list(range(len(self.dataset))) np.random.shuffle(total_index) start_time = time.perf_counter() for i, idx in enumerate(total_index): if (i + 1) % self.log_interval == 0: print_log('==================================', self.logger) get_data_info_start_time = time.perf_counter() data_info = self.dataset.get_data_info(idx) get_data_info_elapsed = time.perf_counter( ) - get_data_info_start_time if (i + 1) % self.log_interval == 0: print_log(f'get_data_info - {get_data_info_elapsed * 1000} ms', self.logger) for t in self.dataset.pipeline.transforms: transform_start_time = time.perf_counter() data_info = t(data_info) transform_elapsed = time.perf_counter() - transform_start_time if (i + 1) % self.log_interval == 0: print_log( f'{t.__class__.__name__} - ' f'{transform_elapsed * 1000} ms', self.logger) if data_info is None: break elapsed = time.perf_counter() - start_time if i >= self.num_warmup: pure_inf_time += elapsed if (i + 1) % self.log_interval == 0: fps = (i + 1 - self.num_warmup) / pure_inf_time print_log( f'Done img [{i + 1:<3}/{self.max_iter}], ' f'fps: {fps:.1f} img/s, ' f'times per img: {1000 / fps:.1f} ms/img', self.logger) if (i + 1) == self.max_iter: fps = (i + 1 - self.num_warmup) / pure_inf_time break start_time = time.perf_counter() return {'fps': fps} def average_multiple_runs(self, results: List[dict]) -> dict: """Average the results of multiple runs.""" print_log('============== Done ==================', self.logger) fps_list_ = [round(result['fps'], 1) for result in results] avg_fps_ = sum(fps_list_) / len(fps_list_) outputs = {'avg_fps': avg_fps_, 'fps_list': fps_list_} if len(fps_list_) > 1: times_pre_image_list_ = [ round(1000 / result['fps'], 1) for result in results ] avg_times_pre_image_ = sum(times_pre_image_list_) / len( times_pre_image_list_) print_log( f'Overall fps: {fps_list_}[{avg_fps_:.1f}] img/s, ' 'times per img: ' f'{times_pre_image_list_}[{avg_times_pre_image_:.1f}] ' 'ms/img', self.logger) else: print_log( f'Overall fps: {fps_list_[0]:.1f} img/s, ' f'times per img: {1000 / fps_list_[0]:.1f} ms/img', self.logger) return outputs