# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import warnings from collections import abc from contextlib import contextmanager from functools import wraps import torch from mmengine.logging import MMLogger def cast_tensor_type(inputs, src_type=None, dst_type=None): """Recursively convert Tensor in inputs from ``src_type`` to ``dst_type``. Args: inputs: Inputs that to be casted. src_type (torch.dtype | torch.device): Source type. src_type (torch.dtype | torch.device): Destination type. Returns: The same type with inputs, but all contained Tensors have been cast. """ assert dst_type is not None if isinstance(inputs, torch.Tensor): if isinstance(dst_type, torch.device): # convert Tensor to dst_device if hasattr(inputs, 'to') and \ hasattr(inputs, 'device') and \ (inputs.device == src_type or src_type is None): return inputs.to(dst_type) else: return inputs else: # convert Tensor to dst_dtype if hasattr(inputs, 'to') and \ hasattr(inputs, 'dtype') and \ (inputs.dtype == src_type or src_type is None): return inputs.to(dst_type) else: return inputs # we need to ensure that the type of inputs to be casted are the same # as the argument `src_type`. elif isinstance(inputs, abc.Mapping): return type(inputs)({ k: cast_tensor_type(v, src_type=src_type, dst_type=dst_type) for k, v in inputs.items() }) elif isinstance(inputs, abc.Iterable): return type(inputs)( cast_tensor_type(item, src_type=src_type, dst_type=dst_type) for item in inputs) # TODO: Currently not supported # elif isinstance(inputs, InstanceData): # for key, value in inputs.items(): # inputs[key] = cast_tensor_type( # value, src_type=src_type, dst_type=dst_type) # return inputs else: return inputs @contextmanager def _ignore_torch_cuda_oom(): """A context which ignores CUDA OOM exception from pytorch. Code is modified from # noqa: E501 """ try: yield except RuntimeError as e: # NOTE: the string may change? if 'CUDA out of memory. ' in str(e): pass else: raise class AvoidOOM: """Try to convert inputs to FP16 and CPU if got a PyTorch's CUDA Out of Memory error. It will do the following steps: 1. First retry after calling `torch.cuda.empty_cache()`. 2. If that still fails, it will then retry by converting inputs to FP16. 3. If that still fails trying to convert inputs to CPUs. In this case, it expects the function to dispatch to CPU implementation. Args: to_cpu (bool): Whether to convert outputs to CPU if get an OOM error. This will slow down the code significantly. Defaults to True. test (bool): Skip `_ignore_torch_cuda_oom` operate that can use lightweight data in unit test, only used in test unit. Defaults to False. Examples: >>> from mmdet.utils.memory import AvoidOOM >>> AvoidCUDAOOM = AvoidOOM() >>> output = AvoidOOM.retry_if_cuda_oom( >>> some_torch_function)(input1, input2) >>> # To use as a decorator >>> # from mmdet.utils import AvoidCUDAOOM >>> @AvoidCUDAOOM.retry_if_cuda_oom >>> def function(*args, **kwargs): >>> return None ``` Note: 1. The output may be on CPU even if inputs are on GPU. Processing on CPU will slow down the code significantly. 2. When converting inputs to CPU, it will only look at each argument and check if it has `.device` and `.to` for conversion. Nested structures of tensors are not supported. 3. Since the function might be called more than once, it has to be stateless. """ def __init__(self, to_cpu=True, test=False): self.to_cpu = to_cpu self.test = test def retry_if_cuda_oom(self, func): """Makes a function retry itself after encountering pytorch's CUDA OOM error. The implementation logic is referred to https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/memory.py Args: func: a stateless callable that takes tensor-like objects as arguments. Returns: func: a callable which retries `func` if OOM is encountered. """ # noqa: W605 @wraps(func) def wrapped(*args, **kwargs): # raw function if not self.test: with _ignore_torch_cuda_oom(): return func(*args, **kwargs) # Clear cache and retry torch.cuda.empty_cache() with _ignore_torch_cuda_oom(): return func(*args, **kwargs) # get the type and device of first tensor dtype, device = None, None values = args + tuple(kwargs.values()) for value in values: if isinstance(value, torch.Tensor): dtype = value.dtype device = value.device break if dtype is None or device is None: raise ValueError('There is no tensor in the inputs, ' 'cannot get dtype and device.') # Convert to FP16 fp16_args = cast_tensor_type(args, dst_type=torch.half) fp16_kwargs = cast_tensor_type(kwargs, dst_type=torch.half) logger = MMLogger.get_current_instance() logger.warning(f'Attempting to copy inputs of {str(func)} ' 'to FP16 due to CUDA OOM') # get input tensor type, the output type will same as # the first parameter type. with _ignore_torch_cuda_oom(): output = func(*fp16_args, **fp16_kwargs) output = cast_tensor_type( output, src_type=torch.half, dst_type=dtype) if not self.test: return output logger.warning('Using FP16 still meet CUDA OOM') # Try on CPU. This will slow down the code significantly, # therefore print a notice. if self.to_cpu: logger.warning(f'Attempting to copy inputs of {str(func)} ' 'to CPU due to CUDA OOM') cpu_device = torch.empty(0).device cpu_args = cast_tensor_type(args, dst_type=cpu_device) cpu_kwargs = cast_tensor_type(kwargs, dst_type=cpu_device) # convert outputs to GPU with _ignore_torch_cuda_oom(): logger.warning(f'Convert outputs to GPU (device={device})') output = func(*cpu_args, **cpu_kwargs) output = cast_tensor_type( output, src_type=cpu_device, dst_type=device) return output warnings.warn('Cannot convert output to GPU due to CUDA OOM, ' 'the output is now on CPU, which might cause ' 'errors if the output need to interact with GPU ' 'data in subsequent operations') logger.warning('Cannot convert output to GPU due to ' 'CUDA OOM, the output is on CPU now.') return func(*cpu_args, **cpu_kwargs) else: # may still get CUDA OOM error return func(*args, **kwargs) return wrapped # To use AvoidOOM as a decorator AvoidCUDAOOM = AvoidOOM()