Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,161 Bytes
5a03db1 11e8a80 5a03db1 34d287c 5a03db1 34d287c dc32bb2 5a03db1 34d287c d814d5a 34d287c 5a03db1 11e8a80 d814d5a 11e8a80 d814d5a 34d287c 5a03db1 d814d5a 34d287c d814d5a 5a03db1 559ce8f d814d5a 34d287c dc32bb2 34d287c dc32bb2 34d287c d814d5a 34d287c d814d5a 34d287c d814d5a 34d287c d814d5a 34d287c d814d5a 34d287c d814d5a ef862e7 34d287c 5a03db1 34d287c 5a03db1 34d287c 5a03db1 34d287c 5a03db1 34d287c 5a03db1 34d287c 5d6ede9 d814d5a 34d287c 3b22732 d814d5a 34d287c d814d5a 3b22732 d814d5a 34d287c 5d6ede9 1bfa5fd 5d6ede9 757e693 5d6ede9 6eae011 5d6ede9 ef862e7 f6a127b 757e693 5d6ede9 1bfa5fd 757e693 5d6ede9 f6a127b 1bfa5fd f6a127b 5d6ede9 3b22732 c5a094f 5d6ede9 1bfa5fd 5d6ede9 18581d3 34d287c 757e693 1bfa5fd 757e693 5d6ede9 34d287c 11e8a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
import trimesh
import sys
import os
sys.path.append('vggsfm_code/')
import shutil
from datetime import datetime
from vggsfm_code.hf_demo import demo_fn
from omegaconf import DictConfig, OmegaConf
from viz_utils.viz_fn import add_camera
import glob
#
from scipy.spatial.transform import Rotation
import PIL
# import spaces
# @spaces.GPU
def vggsfm_demo(
input_video,
input_image,
query_frame_num,
max_query_pts=4096,
):
torch.cuda.empty_cache()
if input_video is not None:
if not isinstance(input_video, str):
input_video = input_video["video"]["path"]
cfg_file = "vggsfm_code/cfgs/demo.yaml"
cfg = OmegaConf.load(cfg_file)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
max_input_image = 20
target_dir = f"input_images_{timestamp}"
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
target_dir_images = target_dir + "/images"
os.makedirs(target_dir_images)
if input_image is not None:
if len(input_image)<3:
return None, "Please input at least three frames"
input_image = sorted(input_image)
input_image = input_image[:max_input_image]
# Copy files to the new directory
for file_name in input_image:
shutil.copy(file_name, target_dir_images)
elif input_video is not None:
vs = cv2.VideoCapture(input_video)
fps = vs.get(cv2.CAP_PROP_FPS)
frame_rate = 1
frame_interval = int(fps * frame_rate)
video_frame_num = 0
count = 0
while video_frame_num<=max_input_image:
(gotit, frame) = vs.read()
count +=1
if not gotit:
break
if count % frame_interval == 0:
cv2.imwrite(target_dir_images+"/"+f"{video_frame_num:06}.png", frame)
video_frame_num+=1
if video_frame_num<3:
return None, "Please input at least three frames"
else:
return None, "Input format incorrect"
cfg.query_frame_num = query_frame_num
cfg.max_query_pts = max_query_pts
print(f"Files have been copied to {target_dir_images}")
cfg.SCENE_DIR = target_dir
# try:
predictions = demo_fn(cfg)
# except:
# return None, "Something seems to be incorrect. Please verify that your inputs are formatted correctly. If the issue persists, kindly create a GitHub issue for further assistance."
glbscene = vggsfm_predictions_to_glb(predictions)
glbfile = target_dir + "/glbscene.glb"
glbscene.export(file_obj=glbfile)
del predictions
gc.collect()
torch.cuda.empty_cache()
print(input_image)
print(input_video)
return glbfile, "Success"
def vggsfm_predictions_to_glb(predictions):
# learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py
points3D = predictions["points3D"].cpu().numpy()
points3D_rgb = predictions["points3D_rgb"].cpu().numpy()
points3D_rgb = (points3D_rgb*255).astype(np.uint8)
extrinsics_opencv = predictions["extrinsics_opencv"].cpu().numpy()
intrinsics_opencv = predictions["intrinsics_opencv"].cpu().numpy()
raw_image_paths = predictions["raw_image_paths"]
images = predictions["images"].permute(0,2,3,1).cpu().numpy()
images = (images*255).astype(np.uint8)
glbscene = trimesh.Scene()
point_cloud = trimesh.PointCloud(points3D, colors=points3D_rgb)
glbscene.add_geometry(point_cloud)
camera_edge_colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204),
(128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)]
frame_num = len(extrinsics_opencv)
extrinsics_opencv_4x4 = np.zeros((frame_num, 4, 4))
extrinsics_opencv_4x4[:, :3, :4] = extrinsics_opencv
extrinsics_opencv_4x4[:, 3, 3] = 1
for idx in range(frame_num):
cam_from_world = extrinsics_opencv_4x4[idx]
cam_to_world = np.linalg.inv(cam_from_world)
cur_cam_color = camera_edge_colors[idx % len(camera_edge_colors)]
cur_focal = intrinsics_opencv[idx, 0, 0]
add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=(1024,1024),
focal=None,screen_width=0.35)
opengl_mat = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
glbscene.apply_transform(np.linalg.inv(np.linalg.inv(extrinsics_opencv_4x4[0]) @ opengl_mat @ rot))
# Calculate the bounding box center and apply the translation
bounding_box = glbscene.bounds
center = (bounding_box[0] + bounding_box[1]) / 2
translation = np.eye(4)
translation[:3, 3] = -center
glbscene.apply_transform(translation)
# glbfile = "glbscene.glb"
# glbscene.export(file_obj=glbfile)
return glbscene
# apple_video = "vggsfm_code/examples/videos/apple_video.mp4"
# os.path.join(os.path.dirname(__file__), "apple_video.mp4")
british_museum_video = "vggsfm_code/examples/videos/british_museum_video.mp4"
# os.path.join(os.path.dirname(__file__), "british_museum_video.mp4")
cake_video = "vggsfm_code/examples/videos/cake_video.mp4"
bonsai_video = "vggsfm_code/examples/videos/bonsai_video.mp4"
# os.path.join(os.path.dirname(__file__), "cake_video.mp4")
# apple_images = glob.glob(f'vggsfm_code/examples/apple/images/*')
bonsai_images = glob.glob(f'vggsfm_code/examples/bonsai/images/*')
cake_images = glob.glob(f'vggsfm_code/examples/cake/images/*')
british_museum_images = glob.glob(f'vggsfm_code/examples/british_museum/images/*')
with gr.Blocks() as demo:
gr.Markdown("# 🎨 VGGSfM: Visual Geometry Grounded Deep Structure From Motion")
gr.Markdown("""
<div style="text-align: left;">
<p>Welcome to <a href="https://vggsfm.github.io/" target="_blank">VGGSfM</a> demo!
This space demonstrates 3D reconstruction from input image frames. </p>
<p>To get started quickly, you can click on our <strong> examples (the bottom of the page) </strong>. If you want to reconstruct your own data, simply: </p>
<ul style="display: inline-block; text-align: left;">
<li>upload the images (.jpg, .png, etc.), or </li>
<li>upload a video (.mp4, .mov, etc.) </li>
</ul>
<p>The reconstruction should normally take <strong> up to 90 second </strong>. If both images and videos are uploaded, the demo will only reconstruct the uploaded images. By default, we extract <strong> 1 image frame per second from the input video </strong>. To prevent crashes on the Hugging Face space, we currently limit reconstruction to the first 20 image frames. </p>
<p>SfM methods are designed for <strong> rigid/static reconstruction </strong>. When dealing with dynamic/moving inputs, these methods may still work by focusing on the rigid parts of the scene. However, to ensure high-quality results, it is better to minimize the presence of moving objects in the input data. </p>
<p>If you meet any problem, feel free to create an issue in our <a href="https://github.com/facebookresearch/vggsfm" target="_blank">GitHub Repo</a> ⭐</p>
<p>(Please note that running reconstruction on Hugging Face space is slower than on a local machine.) </p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(label="Input video", interactive=True)
input_images = gr.File(file_count="multiple", label="Input Images", interactive=True)
num_query_images = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of query images (key frames)",
info="More query images usually lead to better reconstruction at lower speeds. If the viewpoint differences between your images are minimal, you can set this value to 1. ")
num_query_points = gr.Slider(minimum=512, maximum=4096, step=1, value=1024, label="Number of query points",
info="More query points usually lead to denser reconstruction at lower speeds.")
with gr.Column(scale=3):
reconstruction_output = gr.Model3D(label="Reconstruction", height=520)
log_output = gr.Textbox(label="Log")
with gr.Row():
submit_btn = gr.Button("Reconstruct", scale=1)
# submit_btn = gr.Button("Reconstruct", scale=1, elem_attributes={"style": "background-color: blue; color: white;"})
clear_btn = gr.ClearButton([input_video, input_images, num_query_images, num_query_points, reconstruction_output, log_output], scale=1)
examples = [
[british_museum_video, british_museum_images, 2, 4096],
[bonsai_video, bonsai_images, 3, 2048],
[cake_video, cake_images, 3, 2048],
]
gr.Examples(examples=examples,
inputs=[input_video, input_images, num_query_images, num_query_points],
outputs=[reconstruction_output, log_output], # Provide outputs
fn=vggsfm_demo, # Provide the function
cache_examples=True,
)
submit_btn.click(
vggsfm_demo,
[input_video, input_images, num_query_images, num_query_points],
[reconstruction_output, log_output],
concurrency_limit=1
)
# demo.launch(debug=True, share=True)
demo.queue(max_size=20).launch(show_error=True, share=True)
# demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True)
########################################################################################################################
# else:
# import glob
# files = glob.glob(f'vggsfm_code/examples/cake/images/*', recursive=True)
# vggsfm_demo(files, None, None)
# demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True)
|