Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,621 Bytes
8866a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import copy
import inspect
import warnings
from typing import Any, List, Optional, Tuple, TypeVar, Union
import numpy as np
import torch
import torch.nn as nn
from .device_utils import Device, make_device
class TensorAccessor(nn.Module):
"""
A helper class to be used with the __getitem__ method. This can be used for
getting/setting the values for an attribute of a class at one particular
index. This is useful when the attributes of a class are batched tensors
and one element in the batch needs to be modified.
"""
def __init__(self, class_object, index: Union[int, slice]) -> None:
"""
Args:
class_object: this should be an instance of a class which has
attributes which are tensors representing a batch of
values.
index: int/slice, an index indicating the position in the batch.
In __setattr__ and __getattr__ only the value of class
attributes at this index will be accessed.
"""
self.__dict__["class_object"] = class_object
self.__dict__["index"] = index
def __setattr__(self, name: str, value: Any):
"""
Update the attribute given by `name` to the value given by `value`
at the index specified by `self.index`.
Args:
name: str, name of the attribute.
value: value to set the attribute to.
"""
v = getattr(self.class_object, name)
if not torch.is_tensor(v):
msg = "Can only set values on attributes which are tensors; got %r"
raise AttributeError(msg % type(v))
# Convert the attribute to a tensor if it is not a tensor.
if not torch.is_tensor(value):
value = torch.tensor(value, device=v.device, dtype=v.dtype, requires_grad=v.requires_grad)
# Check the shapes match the existing shape and the shape of the index.
if v.dim() > 1 and value.dim() > 1 and value.shape[1:] != v.shape[1:]:
msg = "Expected value to have shape %r; got %r"
raise ValueError(msg % (v.shape, value.shape))
if v.dim() == 0 and isinstance(self.index, slice) and len(value) != len(self.index):
msg = "Expected value to have len %r; got %r"
raise ValueError(msg % (len(self.index), len(value)))
self.class_object.__dict__[name][self.index] = value
def __getattr__(self, name: str):
"""
Return the value of the attribute given by "name" on self.class_object
at the index specified in self.index.
Args:
name: string of the attribute name
"""
if hasattr(self.class_object, name):
return self.class_object.__dict__[name][self.index]
else:
msg = "Attribute %s not found on %r"
return AttributeError(msg % (name, self.class_object.__name__))
BROADCAST_TYPES = (float, int, list, tuple, torch.Tensor, np.ndarray)
class TensorProperties(nn.Module):
"""
A mix-in class for storing tensors as properties with helper methods.
"""
def __init__(self, dtype: torch.dtype = torch.float32, device: Device = "cpu", **kwargs) -> None:
"""
Args:
dtype: data type to set for the inputs
device: Device (as str or torch.device)
kwargs: any number of keyword arguments. Any arguments which are
of type (float/int/list/tuple/tensor/array) are broadcasted and
other keyword arguments are set as attributes.
"""
super().__init__()
self.device = make_device(device)
self._N = 0
if kwargs is not None:
# broadcast all inputs which are float/int/list/tuple/tensor/array
# set as attributes anything else e.g. strings, bools
args_to_broadcast = {}
for k, v in kwargs.items():
if v is None or isinstance(v, (str, bool)):
setattr(self, k, v)
elif isinstance(v, BROADCAST_TYPES):
args_to_broadcast[k] = v
else:
msg = "Arg %s with type %r is not broadcastable"
warnings.warn(msg % (k, type(v)))
names = args_to_broadcast.keys()
# convert from type dict.values to tuple
values = tuple(v for v in args_to_broadcast.values())
if len(values) > 0:
broadcasted_values = convert_to_tensors_and_broadcast(*values, device=device)
# Set broadcasted values as attributes on self.
for i, n in enumerate(names):
setattr(self, n, broadcasted_values[i])
if self._N == 0:
self._N = broadcasted_values[i].shape[0]
def __len__(self) -> int:
return self._N
def isempty(self) -> bool:
return self._N == 0
def __getitem__(self, index: Union[int, slice]) -> TensorAccessor:
"""
Args:
index: an int or slice used to index all the fields.
Returns:
if `index` is an index int/slice return a TensorAccessor class
with getattribute/setattribute methods which return/update the value
at the index in the original class.
"""
if isinstance(index, (int, slice)):
return TensorAccessor(class_object=self, index=index)
msg = "Expected index of type int or slice; got %r"
raise ValueError(msg % type(index))
# pyre-fixme[14]: `to` overrides method defined in `Module` inconsistently.
def to(self, device: Device = "cpu") -> "TensorProperties":
"""
In place operation to move class properties which are tensors to a
specified device. If self has a property "device", update this as well.
"""
device_ = make_device(device)
for k in dir(self):
v = getattr(self, k)
if k == "device":
setattr(self, k, device_)
if torch.is_tensor(v) and v.device != device_:
setattr(self, k, v.to(device_))
return self
def cpu(self) -> "TensorProperties":
return self.to("cpu")
# pyre-fixme[14]: `cuda` overrides method defined in `Module` inconsistently.
def cuda(self, device: Optional[int] = None) -> "TensorProperties":
return self.to(f"cuda:{device}" if device is not None else "cuda")
def clone(self, other) -> "TensorProperties":
"""
Update the tensor properties of other with the cloned properties of self.
"""
for k in dir(self):
v = getattr(self, k)
if inspect.ismethod(v) or k.startswith("__") or type(v) is TypeVar:
continue
if torch.is_tensor(v):
v_clone = v.clone()
else:
v_clone = copy.deepcopy(v)
setattr(other, k, v_clone)
return other
def gather_props(self, batch_idx) -> "TensorProperties":
"""
This is an in place operation to reformat all tensor class attributes
based on a set of given indices using torch.gather. This is useful when
attributes which are batched tensors e.g. shape (N, 3) need to be
multiplied with another tensor which has a different first dimension
e.g. packed vertices of shape (V, 3).
Example
.. code-block:: python
self.specular_color = (N, 3) tensor of specular colors for each mesh
A lighting calculation may use
.. code-block:: python
verts_packed = meshes.verts_packed() # (V, 3)
To multiply these two tensors the batch dimension needs to be the same.
To achieve this we can do
.. code-block:: python
batch_idx = meshes.verts_packed_to_mesh_idx() # (V)
This gives index of the mesh for each vertex in verts_packed.
.. code-block:: python
self.gather_props(batch_idx)
self.specular_color = (V, 3) tensor with the specular color for
each packed vertex.
torch.gather requires the index tensor to have the same shape as the
input tensor so this method takes care of the reshaping of the index
tensor to use with class attributes with arbitrary dimensions.
Args:
batch_idx: shape (B, ...) where `...` represents an arbitrary
number of dimensions
Returns:
self with all properties reshaped. e.g. a property with shape (N, 3)
is transformed to shape (B, 3).
"""
# Iterate through the attributes of the class which are tensors.
for k in dir(self):
v = getattr(self, k)
if torch.is_tensor(v):
if v.shape[0] > 1:
# There are different values for each batch element
# so gather these using the batch_idx.
# First clone the input batch_idx tensor before
# modifying it.
_batch_idx = batch_idx.clone()
idx_dims = _batch_idx.shape
tensor_dims = v.shape
if len(idx_dims) > len(tensor_dims):
msg = "batch_idx cannot have more dimensions than %s. "
msg += "got shape %r and %s has shape %r"
raise ValueError(msg % (k, idx_dims, k, tensor_dims))
if idx_dims != tensor_dims:
# To use torch.gather the index tensor (_batch_idx) has
# to have the same shape as the input tensor.
new_dims = len(tensor_dims) - len(idx_dims)
new_shape = idx_dims + (1,) * new_dims
expand_dims = (-1,) + tensor_dims[1:]
_batch_idx = _batch_idx.view(*new_shape)
_batch_idx = _batch_idx.expand(*expand_dims)
v = v.gather(0, _batch_idx)
setattr(self, k, v)
return self
def format_tensor(input, dtype: torch.dtype = torch.float32, device: Device = "cpu") -> torch.Tensor:
"""
Helper function for converting a scalar value to a tensor.
Args:
input: Python scalar, Python list/tuple, torch scalar, 1D torch tensor
dtype: data type for the input
device: Device (as str or torch.device) on which the tensor should be placed.
Returns:
input_vec: torch tensor with optional added batch dimension.
"""
device_ = make_device(device)
if not torch.is_tensor(input):
input = torch.tensor(input, dtype=dtype, device=device_)
if input.dim() == 0:
input = input.view(1)
if input.device == device_:
return input
input = input.to(device=device)
return input
def convert_to_tensors_and_broadcast(*args, dtype: torch.dtype = torch.float32, device: Device = "cpu"):
"""
Helper function to handle parsing an arbitrary number of inputs (*args)
which all need to have the same batch dimension.
The output is a list of tensors.
Args:
*args: an arbitrary number of inputs
Each of the values in `args` can be one of the following
- Python scalar
- Torch scalar
- Torch tensor of shape (N, K_i) or (1, K_i) where K_i are
an arbitrary number of dimensions which can vary for each
value in args. In this case each input is broadcast to a
tensor of shape (N, K_i)
dtype: data type to use when creating new tensors.
device: torch device on which the tensors should be placed.
Output:
args: A list of tensors of shape (N, K_i)
"""
# Convert all inputs to tensors with a batch dimension
args_1d = [format_tensor(c, dtype, device) for c in args]
# Find broadcast size
sizes = [c.shape[0] for c in args_1d]
N = max(sizes)
args_Nd = []
for c in args_1d:
if c.shape[0] != 1 and c.shape[0] != N:
msg = "Got non-broadcastable sizes %r" % sizes
raise ValueError(msg)
# Expand broadcast dim and keep non broadcast dims the same size
expand_sizes = (N,) + (-1,) * len(c.shape[1:])
args_Nd.append(c.expand(*expand_sizes))
return args_Nd
def ndc_grid_sample(
input: torch.Tensor, grid_ndc: torch.Tensor, *, align_corners: bool = False, **grid_sample_kwargs
) -> torch.Tensor:
"""
Samples a tensor `input` of shape `(B, dim, H, W)` at 2D locations
specified by a tensor `grid_ndc` of shape `(B, ..., 2)` using
the `torch.nn.functional.grid_sample` function.
`grid_ndc` is specified in PyTorch3D NDC coordinate frame.
Args:
input: The tensor of shape `(B, dim, H, W)` to be sampled.
grid_ndc: A tensor of shape `(B, ..., 2)` denoting the set of
2D locations at which `input` is sampled.
See [1] for a detailed description of the NDC coordinates.
align_corners: Forwarded to the `torch.nn.functional.grid_sample`
call. See its docstring.
grid_sample_kwargs: Additional arguments forwarded to the
`torch.nn.functional.grid_sample` call. See the corresponding
docstring for a listing of the corresponding arguments.
Returns:
sampled_input: A tensor of shape `(B, dim, ...)` containing the samples
of `input` at 2D locations `grid_ndc`.
References:
[1] https://pytorch3d.org/docs/cameras
"""
batch, *spatial_size, pt_dim = grid_ndc.shape
if batch != input.shape[0]:
raise ValueError("'input' and 'grid_ndc' have to have the same batch size.")
if input.ndim != 4:
raise ValueError("'input' has to be a 4-dimensional Tensor.")
if pt_dim != 2:
raise ValueError("The last dimension of 'grid_ndc' has to be == 2.")
grid_ndc_flat = grid_ndc.reshape(batch, -1, 1, 2)
# pyre-fixme[6]: For 2nd param expected `Tuple[int, int]` but got `Size`.
grid_flat = ndc_to_grid_sample_coords(grid_ndc_flat, input.shape[2:])
sampled_input_flat = torch.nn.functional.grid_sample(
input, grid_flat, align_corners=align_corners, **grid_sample_kwargs
)
sampled_input = sampled_input_flat.reshape([batch, input.shape[1], *spatial_size])
return sampled_input
def ndc_to_grid_sample_coords(xy_ndc: torch.Tensor, image_size_hw: Tuple[int, int]) -> torch.Tensor:
"""
Convert from the PyTorch3D's NDC coordinates to
`torch.nn.functional.grid_sampler`'s coordinates.
Args:
xy_ndc: Tensor of shape `(..., 2)` containing 2D points in the
PyTorch3D's NDC coordinates.
image_size_hw: A tuple `(image_height, image_width)` denoting the
height and width of the image tensor to sample.
Returns:
xy_grid_sample: Tensor of shape `(..., 2)` containing 2D points in the
`torch.nn.functional.grid_sample` coordinates.
"""
if len(image_size_hw) != 2 or any(s <= 0 for s in image_size_hw):
raise ValueError("'image_size_hw' has to be a 2-tuple of positive integers")
aspect = min(image_size_hw) / max(image_size_hw)
xy_grid_sample = -xy_ndc # first negate the coords
if image_size_hw[0] >= image_size_hw[1]:
xy_grid_sample[..., 1] *= aspect
else:
xy_grid_sample[..., 0] *= aspect
return xy_grid_sample
def parse_image_size(image_size: Union[List[int], Tuple[int, int], int]) -> Tuple[int, int]:
"""
Args:
image_size: A single int (for square images) or a tuple/list of two ints.
Returns:
A tuple of two ints.
Throws:
ValueError if got more than two ints, any negative numbers or non-ints.
"""
if not isinstance(image_size, (tuple, list)):
return (image_size, image_size)
if len(image_size) != 2:
raise ValueError("Image size can only be a tuple/list of (H, W)")
if not all(i > 0 for i in image_size):
raise ValueError("Image sizes must be greater than 0; got %d, %d" % image_size)
if not all(isinstance(i, int) for i in image_size):
raise ValueError("Image sizes must be integers; got %f, %f" % image_size)
return tuple(image_size)
|