vggsfm / viz_utils /viz_fn.py
JianyuanWang's picture
add point filter; check if we can upload gradio_cached_examples
dbccd94
raw
history blame
5.82 kB
import os
import cv2
import torch
import numpy as np
import gradio as gr
import trimesh
import sys
import os
# sys.path.append('vggsfm_code/')
import shutil
from datetime import datetime
# from vggsfm_code.hf_demo import demo_fn
# from omegaconf import DictConfig, OmegaConf
# from viz_utils.viz_fn import add_camera
from scipy.spatial.transform import Rotation
import PIL
from scipy.spatial import cKDTree
def get_density_np(pcl, K=0.005):
if isinstance(K, float):
K = max(int(K * pcl.shape[0]), 1)
tree = cKDTree(pcl)
dists, _ = tree.query(pcl, k=K+1) # K+1 because the point itself is included
dists = dists[:, 1:] # Remove the zero distance to itself
D = np.sqrt(dists).sum(axis=1)
return D
def apply_density_filter_np(pts, feats=None, density_filter=0.9, density_K=100):
"""
:param pts: ndarray of shape (N, 3) representing the point cloud.
:param feats: ndarray of corresponding features for the point cloud.
:param density_filter: Float, the percentage of points to keep based on density.
:param density_K: Int, number of nearest neighbors to consider for density calculation.
:return: Filtered points and their corresponding features.
"""
# Calculate densities
D = get_density_np(pts, K=density_K)
# Apply the density filter
topk_k = max(int((1 - density_filter) * pts.shape[0]), 1)
val = np.partition(D, topk_k)[topk_k]
ok = (D <= val)
# Filter points and features
filtered_pts = pts[ok]
if feats is not None:
filtered_feats = feats[ok]
else:
filtered_feats = feats
return filtered_pts, filtered_feats
def add_camera(scene, pose_c2w, edge_color, image=None,
focal=None, imsize=None,
screen_width=0.03, marker=None):
# learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py
opengl_mat = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
if image is not None:
image = np.asarray(image)
H, W, THREE = image.shape
assert THREE == 3
if image.dtype != np.uint8:
image = np.uint8(255*image)
elif imsize is not None:
W, H = imsize
elif focal is not None:
H = W = focal / 1.1
else:
H = W = 1
if isinstance(focal, np.ndarray):
focal = focal[0]
if not focal:
focal = min(H,W) * 1.1 # default value
# create fake camera
height = max( screen_width/10, focal * screen_width / H )
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
rot45[2, 3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0, 0] = W/H
transform = pose_c2w @ opengl_mat @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4) # , transform=transform)
# this is the image
if image is not None:
vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
vertices = geotrf(transform, vertices)
faces = []
for face in cam.faces:
if 0 in face:
continue
a, b, c = face
a2, b2, c2 = face + len(cam.vertices)
a3, b3, c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a, b, b2))
faces.append((a, a2, c))
faces.append((c2, b, c))
faces.append((a, b, b3))
faces.append((a, a3, c))
faces.append((c3, b, c))
# no culling
faces += [(c, b, a) for a, b, c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:, :3] = edge_color
scene.add_geometry(cam)
if marker == 'o':
marker = trimesh.creation.icosphere(3, radius=screen_width/4)
marker.vertices += pose_c2w[:3,3]
marker.visual.face_colors[:,:3] = edge_color
scene.add_geometry(marker)
def geotrf(Trf, pts, ncol=None, norm=False):
# learned from https://github.com/naver/dust3r/blob/main/dust3r/
assert Trf.ndim >= 2
pts = np.asarray(pts)
# adapt shape if necessary
output_reshape = pts.shape[:-1]
ncol = ncol or pts.shape[-1]
if Trf.ndim >= 3:
n = Trf.ndim - 2
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
if pts.ndim > Trf.ndim:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
elif pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1] + 1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2:
pts = pts.swapaxes(-1, -2)
if norm:
pts = pts / pts[..., -1:]
if norm != 1:
pts *= norm
res = pts[..., :ncol].reshape(*output_reshape, ncol)
return res