Spaces:
Running
Running
from transformers import MarianMTModel, MarianTokenizer | |
import torch | |
from diffusers import StableDiffusionInstructPix2PixPipeline | |
import gradio as gr | |
from PIL import Image | |
import random | |
from langdetect import detect, LangDetectException | |
# Load the InstructPix2Pix model | |
model_id = "timbrooks/instruct-pix2pix" | |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
# Check if a GPU is available, otherwise fallback to CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = pipe.to(device) # Move the model to the appropriate device | |
# Load the translation model (from Arabic to English) | |
translation_model_name = 'Helsinki-NLP/opus-mt-ar-en' | |
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) | |
translation_model = MarianMTModel.from_pretrained(translation_model_name) | |
# Initialize a random seed | |
seed = random.randint(0, 10000) | |
# Function to reset the seed (style change) | |
def change_style(): | |
global seed | |
# Set a new seed | |
seed_value = torch.randint(0, 10000, (1,)).item() | |
seed = torch.manual_seed(seed_value) | |
# Return a human-readable seed value | |
return f"تم تغيير النمط. المعرف الجديد: {seed_value}" | |
# Dictionary to map Arabic to English colors | |
arabic_to_english_colors = { | |
"":"", | |
"أبيض": "White", | |
"أسود": "Black", | |
"أزرق": "Blue", | |
"أخضر": "Green", | |
"أحمر": "Red", | |
"أصفر": "Yellow", | |
"رمادي": "Gray", | |
"برتقالي": "Orange", | |
"بنفسجي": "Purple", | |
"وردي": "Pink", | |
"بني": "Brown", | |
"كحلي": "Navy", | |
"زهري": "Coral", | |
"فيروزي": "Teal", | |
"بيج": "Beige" | |
} | |
# List of English colors | |
english_colors = [ | |
"","White", "Black", "Blue", "Green", "Red", "Yellow", | |
"Gray", "Orange", "Purple", "Pink", "Brown", | |
"Navy", "Coral", "Teal", "Beige" | |
] | |
# Function to detect whether the text is in Arabic using langdetect | |
def is_arabic(text): | |
try: | |
return detect(text) == 'ar' # 'ar' is the ISO 639-1 code for Arabic | |
except LangDetectException: | |
return False # If detection fails, assume it's not Arabic | |
# Function to translate Arabic color to English and change the wall color | |
def change_color(image, arabic_color, english_color): | |
# If a color is chosen from the Arabic dropdown, use it, otherwise use the English dropdown | |
if arabic_color: | |
color_in_english = arabic_to_english_colors.get(arabic_color) | |
elif english_color: | |
color_in_english = english_color | |
else: | |
return "Please select a color." | |
# Construct the prompt to change the wall color | |
prompt = f"paint the walls with {color_in_english} color" | |
# Text CFG (guidance_scale) controls how strongly the model follows the prompt | |
text_cfg = 7.5 | |
# Image CFG: Simulated value for preserving the original image content | |
image_cfg = 1.5 | |
# Apply the edit using InstructPix2Pix | |
edited_image = pipe( | |
prompt=prompt, | |
image=image, | |
num_inference_steps=70, # Number of diffusion steps | |
guidance_scale=text_cfg, # Text CFG for following the prompt | |
image_guidance_scale=image_cfg, # Simulated Image CFG to preserve image content | |
generator=torch.manual_seed(seed) # Random seed for consistency | |
).images[0] | |
return edited_image | |
# Gradio interface for image editing with separate Arabic and English color dropdowns | |
def image_interface(): | |
with gr.Blocks(css=".gradio-container {direction: rtl}") as demo_color: | |
gr.Markdown("## تطبيق لتغيير لون الجدران") | |
# Image upload (translated to Arabic) | |
image_input = gr.Image(type="pil", label="قم برفع صورة للغرفة") | |
# Dropdown for Arabic wall color | |
arabic_color_input = gr.Dropdown(list(arabic_to_english_colors.keys()), label="اختر لون الجدران (بالعربية)") | |
# Dropdown for English wall color | |
english_color_input = gr.Dropdown(english_colors, label="Choose Wall Color (English)") | |
# Display output image | |
result_image = gr.Image(label="الصورة المعدلة") | |
# Button to apply the wall color transformation | |
submit_button = gr.Button("قم بتغيير لون الجدران") | |
# Define action on button click (directly pass dropdown color input to the function) | |
submit_button.click(fn=change_color, inputs=[image_input, arabic_color_input, english_color_input], outputs=result_image) | |
return demo_color | |
# Function to translate Arabic prompt to English | |
def translate_prompt(prompt_ar): | |
translated_tokens = translation_tokenizer(prompt_ar, return_tensors="pt", truncation=True) | |
translated = translation_model.generate(**translated_tokens) | |
prompt_en = translation_tokenizer.decode(translated[0], skip_special_tokens=True) | |
return prompt_en | |
# General image editing function (supports both Arabic and English) | |
def edit_image(image, instruction): | |
# Detect if the instruction is in Arabic | |
if is_arabic(instruction): | |
# Translate Arabic instruction to English | |
instruction_en = translate_prompt(instruction) | |
else: | |
# If it's in English, use it directly | |
instruction_en = instruction | |
# Text CFG (guidance_scale) controls how strongly the model follows the prompt | |
text_cfg = 12.0 | |
# Image CFG: Simulated value for preserving the original image content | |
image_cfg = 1.5 | |
# Apply the edit using InstructPix2Pix with the translated prompt | |
edited_image = pipe( | |
prompt=instruction_en, | |
image=image, | |
num_inference_steps=70, # Number of diffusion steps | |
guidance_scale=text_cfg, # Text CFG for following the prompt | |
image_guidance_scale=image_cfg, # Simulated Image CFG to preserve image content | |
generator=torch.manual_seed(seed) # Random seed for consistency | |
).images[0] | |
return edited_image | |
# Gradio interface for general image editing in Arabic and English | |
def general_editing_interface(): | |
with gr.Blocks(css=".gradio-container {direction: rtl}") as demo_general: | |
gr.Markdown("## تطبيق تحرير الصور العام") | |
# Image upload in Arabic and English | |
image_input = gr.Image(type="pil", label="قم بتحميل صورة") | |
# Textbox for instruction in Arabic or English | |
instruction_input = gr.Textbox(label="أدخل التعليمات", placeholder="وصف التعديلات (مثل: 'اجعل الجو مثلج') أو 'Make it snowy'") | |
# Display output image | |
result_image = gr.Image(label="الصورة المعدلة") | |
# Button to apply the transformation | |
submit_button = gr.Button("تطبيق التعديلات") | |
# Button to change the seed (style) | |
change_style_button = gr.Button("تغيير النمط") | |
# Output for seed change message | |
seed_output = gr.Textbox(label="معلومات النمط", interactive=False) | |
# Define action on button click | |
submit_button.click(fn=edit_image, inputs=[image_input, instruction_input], outputs=result_image) | |
change_style_button.click(fn=change_style, outputs=seed_output) | |
return demo_general | |
# Launch both Gradio apps | |
color_app = image_interface() | |
general_editing_app = general_editing_interface() | |
with gr.Blocks(css=".gradio-container {direction: rtl}") as combined_demo: | |
gr.Markdown("## اختر التطبيق") | |
with gr.Tab("تطبيق تحرير الصور "): | |
general_editing_app.render() | |
with gr.Tab("تطبيق تغيير لون الطلاء"): | |
color_app.render() | |
# Launch the combined Gradio app | |
combined_demo.launch() | |