from transformers import MarianMTModel, MarianTokenizer import torch from diffusers import StableDiffusionInstructPix2PixPipeline import gradio as gr from PIL import Image import random # Load the InstructPix2Pix model model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Check if a GPU is available, otherwise fallback to CPU device = "cuda" if torch.cuda.is_available() else "cpu" pipe = pipe.to(device) # Move the model to the appropriate device # Load the translation model (from Arabic to English) translation_model_name = 'Helsinki-NLP/opus-mt-ar-en' translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) translation_model = MarianMTModel.from_pretrained(translation_model_name) # Initialize a random seed seed = random.randint(0, 10000) # Function to reset the seed (style change) def change_style(): global seed seed = torch.manual_seed(torch.randint(0, 10000, (1,)).item()) return f"تم تغيير النمط. المعرف الجديد: {seed}" # Dictionary to map Arabic colors to English arabic_to_english_colors = { "أبيض": "White", "أسود": "Black", "أزرق": "Blue", "أخضر": "Green", "أحمر": "Red", "أصفر": "Yellow", "رمادي": "Gray", "برتقالي": "Orange", "بنفسجي": "Purple", "وردي": "Pink", "بني": "Brown", "كحلي": "Navy", "زهري": "Coral", "فيروزي": "Teal", "بيج": "Beige" } # Function to translate Arabic color to English and change the wall color def change_color(image, color): # Translate Arabic color to English using the dictionary color_in_english = arabic_to_english_colors.get(color, None) # If color not found in the dictionary, return an error message if not color_in_english: return f"اللون '{color}' غير موجود في القائمة. يرجى إدخال لون صحيح." # Construct the furniture prompt in English prompt = f"paint the walls with {color_in_english} color" # Text CFG (guidance_scale) controls how strongly the model follows the prompt text_cfg = 7.5 # Image CFG: Simulated value for preserving the original image content image_cfg = 1.5 # Apply the edit using InstructPix2Pix, with text CFG and image CFG influencing the guidance scale edited_image = pipe( prompt=prompt, image=image, num_inference_steps=70, # Number of diffusion steps guidance_scale=text_cfg, # Text CFG for following the prompt image_guidance_scale=image_cfg, # Simulated Image CFG to preserve image content generator=torch.manual_seed(seed) # Random seed for consistency ).images[0] return edited_image # Gradio interface for image editing in Arabic def image_interface(): with gr.Blocks(css=".gradio-container {direction: rtl}") as demo_color: gr.Markdown("## تطبيق لتغيير لون الجدران") # Image upload (translated to Arabic) image_input = gr.Image(type="pil", label="قم برفع صورة للغرفة") # List of common painting colors in Arabic common_colors = [ "أبيض", "أسود", "أزرق", "أخضر", "أحمر", "أصفر", "رمادي", "برتقالي", "بنفسجي", "وردي", "بني", "كحلي", "زهري", "فيروزي", "بيج" ] # Dropdown for wall color (Arabic) color_input = gr.Dropdown(common_colors, label="اختر لون الجدران") # Display output image result_image = gr.Image(label="الصورة المعدلة") # Button to apply the wall color transformation submit_button = gr.Button("قم بتغيير لون الجدران") # Define action on button click (directly pass dropdown color input to the function) submit_button.click(fn=change_color, inputs=[image_input, color_input], outputs=result_image) return demo_color # Function to translate Arabic prompt to English def translate_prompt(prompt_ar): translated_tokens = translation_tokenizer(prompt_ar, return_tensors="pt", truncation=True) translated = translation_model.generate(**translated_tokens) prompt_en = translation_tokenizer.decode(translated[0], skip_special_tokens=True) return prompt_en # General image editing function def edit_image(image, instruction_ar): # Translate Arabic instruction to English instruction_en = translate_prompt(instruction_ar) # Text CFG (guidance_scale) controls how strongly the model follows the prompt text_cfg = 12.0 # Image CFG: Simulated value for preserving the original image content image_cfg = 1.5 # Apply the edit using InstructPix2Pix with the translated prompt edited_image = pipe( prompt=instruction_en, image=image, num_inference_steps=70, # Number of diffusion steps guidance_scale=text_cfg, # Text CFG for following the prompt image_guidance_scale=image_cfg, # Simulated Image CFG to preserve image content generator=torch.manual_seed(seed) # Random seed for consistency ).images[0] return edited_image # Gradio interface for general image editing in Arabic def general_editing_interface(): with gr.Blocks(css=".gradio-container {direction: rtl}") as demo_general: gr.Markdown("## تطبيق تحرير الصور العام") # Image upload in Arabic image_input = gr.Image(type="pil", label="قم بتحميل صورة") # Textbox for instruction in Arabic instruction_input = gr.Textbox(label="أدخل التعليمات", placeholder="وصف التعديلات (مثل: 'اجعل الجو مثلج')") # Display output image result_image = gr.Image(label="الصورة المعدلة") # Button to apply the transformation submit_button = gr.Button("تطبيق التعديلات") # Button to change the seed (style) change_style_button = gr.Button("تغيير النمط") # Output for seed change message seed_output = gr.Textbox(label="معلومات النمط", interactive=False) # Define action on button click submit_button.click(fn=edit_image, inputs=[image_input, instruction_input], outputs=result_image) change_style_button.click(fn=change_style, outputs=seed_output) return demo_general # Launch both Gradio apps color_app = image_interface() general_editing_app = general_editing_interface() with gr.Blocks(css=".gradio-container {direction: rtl}") as combined_demo: gr.Markdown("## اختر التطبيق") with gr.Tab("تطبيق تحرير الصور "): general_editing_app.render() with gr.Tab("تطبيق تغيير لون الطلاء"): color_app.render() # Launch the combined Gradio app combined_demo.launch()