File size: 13,370 Bytes
9e90264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import random

import huggingface_hub
import numpy as np
from datasets import load_dataset, Dataset
from dotenv import load_dotenv
from pytorch_lightning import LightningDataModule
from pytorch_lightning.utilities.types import TRAIN_DATALOADERS, EVAL_DATALOADERS
from torch.utils.data import DataLoader, IterableDataset
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score
# from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel, BertModel
from transformers import TrainingArguments, Trainer
import torch
import logging
import wandb

timber = logging.getLogger()
# logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=logging.INFO)  # change to level=logging.DEBUG to print more logs...

black = "\u001b[30m"
red = "\u001b[31m"
green = "\u001b[32m"
yellow = "\u001b[33m"
blue = "\u001b[34m"
magenta = "\u001b[35m"
cyan = "\u001b[36m"
white = "\u001b[37m"

FORWARD = "FORWARD_INPUT"
BACKWARD = "BACKWARD_INPUT"

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

PRETRAINED_MODEL_NAME: str = "zhihan1996/DNA_bert_6"


def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
  start = 0
  end = len(seq)
  rand_pos = random.randrange(start, (end - len(DEBUG_MOTIF)))
  random_end = rand_pos + len(DEBUG_MOTIF)
  output = seq[start: rand_pos] + DEBUG_MOTIF + seq[random_end: end]
  assert len(seq) == len(output)
  return output


class PagingMQTLDataset(IterableDataset):
  def __init__(self,
               m_dataset,
               seq_len,
               tokenizer,
               max_length=512,
               check_if_pipeline_is_ok_by_inserting_debug_motif=False):
    self.dataset = m_dataset
    self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
    self.debug_motif = "ATCGCCTA"
    self.seq_len = seq_len

    self.bert_tokenizer = tokenizer
    self.max_length = max_length
    pass

  def __iter__(self):
    for row in self.dataset:
      processed = self.preprocess(row)
      if processed is not None:
        yield processed

  def preprocess(self, row):
    sequence = row['sequence']  # Fetch the 'sequence' column
    if len(sequence) != self.seq_len:
      return None  # skip problematic row!
    label = row['label']  # Fetch the 'label' column (or whatever target you use)
    if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
      sequence = insert_debug_motif_at_random_position(seq=sequence, DEBUG_MOTIF=self.debug_motif)

    input_ids = self.bert_tokenizer(sequence)["input_ids"]
    tokenized_tensor = torch.tensor(input_ids)
    label_tensor = torch.tensor(label)
    output_dict = {"input_ids": tokenized_tensor, "labels": label_tensor}  # so this is now you do it?
    return output_dict  # tokenized_tensor, label_tensor


class MqtlDataModule(LightningDataModule):
  def __init__(self, train_ds, val_ds, test_ds, batch_size=16):
    super().__init__()
    self.batch_size = batch_size
    self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=False,
                                   # collate_fn=collate_fn,
                                   num_workers=1,
                                   # persistent_workers=True
                                   )
    self.validate_loader = DataLoader(val_ds, batch_size=self.batch_size, shuffle=False,
                                      # collate_fn=collate_fn,
                                      num_workers=1,
                                      # persistent_workers=True
                                      )
    self.test_loader = DataLoader(test_ds, batch_size=self.batch_size, shuffle=False,
                                  # collate_fn=collate_fn,
                                  num_workers=1,
                                  # persistent_workers=True
                                  )
    pass

  def prepare_data(self):
    pass

  def setup(self, stage: str) -> None:
    timber.info(f"inside setup: {stage = }")
    pass

  def train_dataloader(self) -> TRAIN_DATALOADERS:
    return self.train_loader

  def val_dataloader(self) -> EVAL_DATALOADERS:
    return self.validate_loader

  def test_dataloader(self) -> EVAL_DATALOADERS:
    return self.test_loader


def create_paging_train_val_test_datasets(tokenizer, WINDOW, is_debug, batch_size=1000):
  data_files = {
    # small samples
    "train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
    "validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
    "test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
    # medium samples
    "train_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_train_binned.csv",
    "validate_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_validate_binned.csv",
    "test_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_test_binned.csv",

    # large samples
    "train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
    "validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
    "test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
  }

  dataset_map = None
  is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
  if is_my_laptop:
    dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
  else:
    dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)

  train_dataset = PagingMQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
                                    check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
                                    tokenizer=tokenizer,
                                    seq_len=WINDOW
                                    )
  val_dataset = PagingMQTLDataset(dataset_map[f"validate_binned_{WINDOW}"],
                                  check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
                                  tokenizer=tokenizer,
                                  seq_len=WINDOW)
  test_dataset = PagingMQTLDataset(dataset_map[f"test_binned_{WINDOW}"],
                                   check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
                                   tokenizer=tokenizer,
                                   seq_len=WINDOW)
  # data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset, batch_size=batch_size)
  return train_dataset, val_dataset, test_dataset


def login_inside_huggingface_virtualmachine():
  # Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
  try:
    load_dotenv()  # Only useful on your laptop if .env exists
    print(".env file loaded successfully.")
  except Exception as e:
    print(f"Warning: Could not load .env file. Exception: {e}")

  # Try to get the token from environment variables
  try:
    token = os.getenv("HF_TOKEN")

    if not token:
      raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")

    # Log in to Hugging Face Hub
    huggingface_hub.login(token)
    print("Logged in to Hugging Face Hub successfully.")

  except Exception as e:
    print(f"Error during Hugging Face login: {e}")
    # Handle the error appropriately (e.g., exit or retry)

  # wand db login
  try:
    api_key = os.getenv("WAND_DB_API_KEY")
    timber.info(f"{api_key = }")

    if not api_key:
      raise ValueError("WAND_DB_API_KEY not found. Make sure to set it in the environment variables or .env file.")

    # Log in to Hugging Face Hub
    wandb.login(key=api_key)
    print("Logged in to wand db successfully.")

  except Exception as e:
    print(f"Error during wand db Face login: {e}")
  pass


# use sklearn cz torchmetrics.classification gave array index out of bound exception :/ (whatever it is called in python)
def compute_metrics_using_sklearn(p):
  try:
    pred, labels = p

    # Get predicted class labels
    pred_labels = np.argmax(pred, axis=1)

    # Get predicted probabilities for the positive class
    pred_probs = pred[:, 1]  # Assuming binary classification and 2 output classes

    accuracy = accuracy_score(y_true=labels, y_pred=pred_labels)
    recall = recall_score(y_true=labels, y_pred=pred_labels)
    precision = precision_score(y_true=labels, y_pred=pred_labels)
    f1 = f1_score(y_true=labels, y_pred=pred_labels)
    roc_auc = roc_auc_score(y_true=labels, y_score=pred_probs)

    return {"accuracy": accuracy, "roc_auc": roc_auc, "precision": precision, "recall": recall, "f1": f1}

  except Exception as x:
    print(f"compute_metrics_using_sklearn failed with exception: {x}")
    return {"accuracy": 0, "roc_auc": 0, "precision": 0, "recall": 0, "f1": 0}


def start():
  os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

  login_inside_huggingface_virtualmachine()
  WINDOW = 4000
  batch_size = 100
  model_local_directory = f"my-awesome-model-{WINDOW}"
  model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"

  is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")

  tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME, trust_remote_code=True)
  classifier_model = AutoModelForSequenceClassification.from_pretrained(PRETRAINED_MODEL_NAME, num_labels=2)
  args = {
    "output_dir": "output_dnabert-6-mqtl_classification",
    "num_train_epochs": 1,
    "max_steps": 20_000,  # train 36k + val 4k = 40k
    # Set the number of steps you expect to train, originally 1000, takes too much time. So I set it to 10 to run faster and check my code/pipeline
    "run_name": "laptop_run_dna-bert-6-mqtl_classification",  # Override run_name here
    "per_device_train_batch_size": 1,
    "gradient_accumulation_steps": 32,
    "gradient_checkpointing": True,
    "learning_rate": 1e-3,
    "save_safetensors": False,  # I added it. this solves the runtime error!
    # not sure if it is a good idea. sklearn may slow down training, causing time loss... if so, disable these 2 lines below
    "evaluation_strategy": "epoch",  # To calculate metrics per epoch
    "logging_strategy": "epoch"  # Extra: to log training data stats for loss
  }

  training_args = TrainingArguments(**args)
  # train_dataset, eval_dataset, test_dataset = create_data_module(tokenizer=tokenizer, WINDOW=WINDOW,
  #                                                                batch_size=batch_size,
  #                                                                is_debug=False)
  """  # example code
  max_length = 32_000
  sequence = 'ACTG' * int(max_length / 4)
  # sequence = 'ACTG' * int(1000) # seq_len = 4000 it works!
  sequence = [sequence] * 8  # Create 8 identical samples
  tokenized = tokenizer(sequence)["input_ids"]
  labels = [0, 1] * 4

  # Create a dataset for training
  run_the_code_ds = Dataset.from_dict({"input_ids": tokenized, "labels": labels})
  run_the_code_ds.set_format("pt")
  """

  train_ds, val_ds, test_ds = create_paging_train_val_test_datasets(tokenizer, WINDOW=WINDOW, is_debug=False)
  # train_ds, val_ds, test_ds = run_the_code_ds, run_the_code_ds, run_the_code_ds
  # train_ds.set_format("pt") # doesn't work!

  trainer = Trainer(
    model=classifier_model,
    args=training_args,
    train_dataset=train_ds,
    eval_dataset=val_ds,
    compute_metrics=compute_metrics_using_sklearn  # torch_metrics.compute_metrics
  )
  # train, and validate
  result = trainer.train()
  try:
    print(f"{result = }")
  except Exception as x:
    print(f"{x = }")

  # testing
  try:
    # with torch.no_grad(): # didn't work :/
    test_results = trainer.evaluate(eval_dataset=test_ds)
    print(f"{test_results = }")
  except Exception as oome:
    print(f"{oome = }")
  finally:
    # save the model
    model_name = "DnaBert6MQtlClassifier"

    classifier_model.save_pretrained(save_directory=model_local_directory, safe_serialization=False)

    # push to the hub
    commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
    if is_my_laptop:
      commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"

    classifier_model.push_to_hub(
      repo_id=model_remote_repository,
      # subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
      commit_message=commit_message,  # f":tada: Push model for window size {WINDOW}"
      safe_serialization=False
    )
  pass


def interprete_demo():
  is_my_laptop = True
  WINDOW = 4000
  batch_size = 100
  model_local_directory = f"my-awesome-model-{WINDOW}"
  model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"

  try:
    classifier_model = AutoModel.from_pretrained(model_remote_repository)
    # todo: use captum / gentech-grelu to interpret the model
  except Exception as x:
    print(x)


if __name__ == '__main__':
  start()
  pass