File size: 20,106 Bytes
2c8df23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import time
from matplotlib.colors import ListedColormap
import matplotlib.patches as patches

class GridWorld:
    """A simple grid world environment with obstacles."""
    
    def __init__(self, height=4, width=4):
        # Grid dimensions
        self.height = height
        self.width = width
        
        # Define states
        self.n_states = self.height * self.width
        
        # Actions: 0: up, 1: right, 2: down, 3: left
        self.n_actions = 4
        self.action_names = ['Up', 'Right', 'Down', 'Left']
        
        # Define rewards
        self.rewards = np.zeros((self.height, self.width))
        # Goal state
        self.rewards[self.height-1, self.width-1] = 1.0
        # Obstacles (negative reward)
        self.obstacles = []
        if height >= 4 and width >= 4:
            self.rewards[1, 1] = -1.0
            self.rewards[1, 2] = -1.0
            self.rewards[2, 1] = -1.0
            self.obstacles = [(1, 1), (1, 2), (2, 1)]
        
        # Start state
        self.start_state = (0, 0)
        
        # Goal state
        self.goal_state = (self.height-1, self.width-1)
        
        # Reset the environment
        self.reset()
    
    def reset(self):
        """Reset the agent to the start state."""
        self.agent_position = self.start_state
        return self._get_state()
    
    def _get_state(self):
        """Convert the agent's (row, col) position to a state number."""
        row, col = self.agent_position
        return row * self.width + col
    
    def _get_pos_from_state(self, state):
        """Convert a state number to (row, col) position."""
        row = state // self.width
        col = state % self.width
        return (row, col)
    
    def step(self, action):
        """Take an action and return next_state, reward, done."""
        row, col = self.agent_position
        
        # Apply the action
        if action == 0:  # up
            row = max(0, row - 1)
        elif action == 1:  # right
            col = min(self.width - 1, col + 1)
        elif action == 2:  # down
            row = min(self.height - 1, row + 1)
        elif action == 3:  # left
            col = max(0, col - 1)
        
        # Update agent position
        self.agent_position = (row, col)
        
        # Get reward
        reward = self.rewards[row, col]
        
        # Check if episode is done
        done = (row, col) == self.goal_state
        
        return self._get_state(), reward, done

class QLearningAgent:
    """A simple Q-learning agent."""
    
    def __init__(self, n_states, n_actions, learning_rate=0.1, discount_factor=0.9, exploration_rate=1.0, exploration_decay=0.995):
        """Initialize the Q-learning agent."""
        self.n_states = n_states
        self.n_actions = n_actions
        self.learning_rate = learning_rate
        self.discount_factor = discount_factor
        self.exploration_rate = exploration_rate
        self.exploration_decay = exploration_decay
        
        # Initialize Q-table
        self.q_table = np.zeros((n_states, n_actions))
        
        # Track visited states for visualization
        self.visit_counts = np.zeros(n_states)
        
        # Training metrics
        self.rewards_history = []
        self.exploration_rates = []
    
    def select_action(self, state):
        """Select an action using epsilon-greedy policy."""
        if np.random.random() < self.exploration_rate:
            # Explore: select a random action
            return np.random.randint(self.n_actions)
        else:
            # Exploit: select the action with the highest Q-value
            return np.argmax(self.q_table[state])
    
    def update(self, state, action, reward, next_state, done):
        """Update the Q-table using the Q-learning update rule."""
        # Calculate the Q-target
        if done:
            q_target = reward
        else:
            q_target = reward + self.discount_factor * np.max(self.q_table[next_state])
        
        # Update the Q-value
        self.q_table[state, action] += self.learning_rate * (q_target - self.q_table[state, action])
        
        # Update visit count for visualization
        self.visit_counts[state] += 1
    
    def decay_exploration(self):
        """Decay the exploration rate."""
        self.exploration_rate *= self.exploration_decay
        self.exploration_rates.append(self.exploration_rate)
    
    def get_policy(self):
        """Return the current greedy policy."""
        return np.argmax(self.q_table, axis=1)
    
    def reset(self):
        """Reset the agent for a new training session."""
        self.q_table = np.zeros((self.n_states, self.n_actions))
        self.visit_counts = np.zeros(self.n_states)
        self.rewards_history = []
        self.exploration_rates = []


def create_gridworld_figure(env, agent, episode_count=0, total_reward=0):
    """Create a figure with environment, visit heatmap, and Q-values."""
    fig, axes = plt.subplots(1, 3, figsize=(15, 5))
    fig.suptitle(f"Episode: {episode_count}, Total Reward: {total_reward:.2f}, Exploration Rate: {agent.exploration_rate:.2f}")
    
    # Define colors for different cell types
    colors = {
        'empty': 'white',
        'obstacle': 'black',
        'goal': 'green',
        'start': 'blue',
        'agent': 'red'
    }
    
    # Helper function to draw grid
    def draw_grid(ax):
        # Create a grid
        for i in range(env.height + 1):
            ax.axhline(i, color='black', lw=1)
        for j in range(env.width + 1):
            ax.axvline(j, color='black', lw=1)
        
        # Set limits and remove ticks
        ax.set_xlim(0, env.width)
        ax.set_ylim(0, env.height)
        ax.invert_yaxis()  # Invert y-axis to match grid coordinates
        ax.set_xticks(np.arange(0.5, env.width, 1))
        ax.set_yticks(np.arange(0.5, env.height, 1))
        ax.set_xticklabels(range(env.width))
        ax.set_yticklabels(range(env.height))
    
    # Helper function to draw a cell
    def draw_cell(ax, row, col, cell_type):
        color = colors.get(cell_type, 'white')
        rect = patches.Rectangle((col, row), 1, 1, linewidth=1, edgecolor='black', facecolor=color, alpha=0.7)
        ax.add_patch(rect)
    
    # Helper function to draw an arrow
    def draw_arrow(ax, row, col, action):
        # Coordinates for arrows
        arrow_starts = {
            0: (col + 0.5, row + 0.7),  # up
            1: (col + 0.3, row + 0.5),  # right
            2: (col + 0.5, row + 0.3),  # down
            3: (col + 0.7, row + 0.5)   # left
        }
        
        arrow_ends = {
            0: (col + 0.5, row + 0.3),  # up
            1: (col + 0.7, row + 0.5),  # right
            2: (col + 0.5, row + 0.7),  # down
            3: (col + 0.3, row + 0.5)   # left
        }
        
        ax.annotate('', xy=arrow_ends[action], xytext=arrow_starts[action],
                  arrowprops=dict(arrowstyle='->', lw=2, color='blue'))
    
    # Draw Environment
    ax = axes[0]
    ax.set_title('GridWorld Environment')
    draw_grid(ax)
    
    # Draw cells
    for i in range(env.height):
        for j in range(env.width):
            if (i, j) in env.obstacles:
                draw_cell(ax, i, j, 'obstacle')
            elif (i, j) == env.goal_state:
                draw_cell(ax, i, j, 'goal')
            elif (i, j) == env.start_state:
                draw_cell(ax, i, j, 'start')
    
    # Draw agent
    row, col = env.agent_position
    draw_cell(ax, row, col, 'agent')
    
    # Draw policy arrows
    policy = agent.get_policy()
    for state in range(env.n_states):
        row, col = env._get_pos_from_state(state)
        if (row, col) not in env.obstacles and (row, col) != env.goal_state:
            draw_arrow(ax, row, col, policy[state])
    
    # Ensure proper aspect ratio
    ax.set_aspect('equal')
    
    # Draw Visit Heatmap
    ax = axes[1]
    ax.set_title('State Visitation Heatmap')
    draw_grid(ax)
    
    # Create heatmap data
    heatmap_data = np.zeros((env.height, env.width))
    for state in range(env.n_states):
        row, col = env._get_pos_from_state(state)
        heatmap_data[row, col] = agent.visit_counts[state]
    
    # Normalize values for coloring
    max_visits = max(1, np.max(heatmap_data))
    
    # Draw heatmap
    for i in range(env.height):
        for j in range(env.width):
            if (i, j) in env.obstacles:
                draw_cell(ax, i, j, 'obstacle')
            elif (i, j) == env.goal_state:
                draw_cell(ax, i, j, 'goal')
            else:
                intensity = heatmap_data[i, j] / max_visits
                color = plt.cm.viridis(intensity)
                rect = patches.Rectangle((j, i), 1, 1, linewidth=1, edgecolor='black', facecolor=color, alpha=0.7)
                ax.add_patch(rect)
                # Add visit count text
                if heatmap_data[i, j] > 0:
                    ax.text(j + 0.5, i + 0.5, int(heatmap_data[i, j]), ha='center', va='center', color='white' if intensity > 0.5 else 'black')
    
    # Ensure proper aspect ratio
    ax.set_aspect('equal')
    
    # Draw Q-values
    ax = axes[2]
    ax.set_title('Q-Values')
    draw_grid(ax)
    
    # Draw Q-values for each cell
    for state in range(env.n_states):
        row, col = env._get_pos_from_state(state)
        
        if (row, col) in env.obstacles:
            draw_cell(ax, row, col, 'obstacle')
            continue
        
        if (row, col) == env.goal_state:
            draw_cell(ax, row, col, 'goal')
            continue
        
        # Calculate q-values for each action
        q_values = agent.q_table[state]
        
        # Draw arrows proportional to Q-values
        for action in range(env.n_actions):
            q_value = q_values[action]
            
            # Only draw arrows for positive Q-values
            if q_value > 0:
                # Normalize arrow size
                max_q = max(0.1, np.max(q_values))
                arrow_size = 0.3 * (q_value / max_q)
                
                # Position calculations
                center_x = col + 0.5
                center_y = row + 0.5
                
                # Direction vectors
                directions = [
                    (0, -arrow_size),  # up
                    (arrow_size, 0),   # right
                    (0, arrow_size),   # down
                    (-arrow_size, 0)   # left
                ]
                
                dx, dy = directions[action]
                
                # Draw arrow
                ax.arrow(center_x, center_y, dx, dy, head_width=0.1, head_length=0.1, 
                       fc='blue', ec='blue', alpha=0.7)
                
                # Add Q-value text
                text_positions = [
                    (center_x, center_y - 0.25),  # up
                    (center_x + 0.25, center_y),  # right
                    (center_x, center_y + 0.25),  # down
                    (center_x - 0.25, center_y)   # left
                ]
                
                tx, ty = text_positions[action]
                ax.text(tx, ty, f"{q_value:.2f}", ha='center', va='center', fontsize=8, 
                       bbox=dict(facecolor='white', alpha=0.7, boxstyle='round,pad=0.1'))
    
    # Ensure proper aspect ratio
    ax.set_aspect('equal')
    
    plt.tight_layout()
    return fig

def create_metrics_figure(agent):
    """Create a figure with training metrics."""
    fig, axes = plt.subplots(1, 2, figsize=(12, 4))
    
    # Plot rewards
    if agent.rewards_history:
        axes[0].plot(agent.rewards_history)
        axes[0].set_title('Rewards per Episode')
        axes[0].set_xlabel('Episode')
        axes[0].set_ylabel('Total Reward')
        axes[0].grid(True)
    else:
        axes[0].set_title('No reward data yet')
    
    # Plot exploration rate
    if agent.exploration_rates:
        axes[1].plot(agent.exploration_rates)
        axes[1].set_title('Exploration Rate Decay')
        axes[1].set_xlabel('Episode')
        axes[1].set_ylabel('Exploration Rate (ε)')
        axes[1].grid(True)
    else:
        axes[1].set_title('No exploration rate data yet')
    
    plt.tight_layout()
    return fig

def train_single_episode(env, agent):
    """Train for a single episode and return the total reward."""
    state = env.reset()
    total_reward = 0
    done = False
    steps = 0
    max_steps = env.width * env.height * 3  # Prevent infinite loops
    
    while not done and steps < max_steps:
        # Select action
        action = agent.select_action(state)
        
        # Take the action
        next_state, reward, done = env.step(action)
        
        # Update the Q-table
        agent.update(state, action, reward, next_state, done)
        
        # Update state and total reward
        state = next_state
        total_reward += reward
        steps += 1
    
    # Decay exploration rate
    agent.decay_exploration()
    
    # Store the total reward
    agent.rewards_history.append(total_reward)
    
    return total_reward

def train_agent(env, agent, episodes, progress=gr.Progress()):
    """Train the agent for a specified number of episodes."""
    progress_text = ""
    progress(0, desc="Starting training...")
    
    for episode in progress.tqdm(range(episodes)):
        total_reward = train_single_episode(env, agent)
        
        if (episode + 1) % 10 == 0 or episode == episodes - 1:
            progress_text += f"Episode {episode + 1}/{episodes}, Reward: {total_reward}, Exploration: {agent.exploration_rate:.3f}\n"
    
    # Create final visualization
    env_fig = create_gridworld_figure(env, agent, episode_count=episodes, total_reward=total_reward)
    metrics_fig = create_metrics_figure(agent)
    
    return env_fig, metrics_fig, progress_text

def run_test_episode(env, agent):
    """Run a test episode using the learned policy."""
    state = env.reset()
    total_reward = 0
    done = False
    path = [env._get_pos_from_state(state)]
    steps = 0
    max_steps = env.width * env.height * 3  # Prevent infinite loops
    
    while not done and steps < max_steps:
        # Select the best action from the learned policy
        action = np.argmax(agent.q_table[state])
        
        # Take the action
        next_state, reward, done = env.step(action)
        
        # Update state and total reward
        state = next_state
        total_reward += reward
        path.append(env._get_pos_from_state(state))
        steps += 1
    
    # Create visualization
    env_fig = create_gridworld_figure(env, agent, episode_count="Test", total_reward=total_reward)
    
    # Format path for display
    path_text = "Path taken:\n"
    for i, pos in enumerate(path):
        path_text += f"Step {i}: {pos}\n"
    
    return env_fig, path_text, f"Test completed with total reward: {total_reward}"

def create_ui():
    """Create the Gradio interface."""
    # Create environment and agent
    env = GridWorld(height=4, width=4)
    agent = QLearningAgent(
        n_states=env.n_states,
        n_actions=env.n_actions,
        learning_rate=0.1,
        discount_factor=0.9,
        exploration_rate=1.0,
        exploration_decay=0.995
    )
    
    # Create initial visualizations
    init_env_fig = create_gridworld_figure(env, agent)
    init_metrics_fig = create_metrics_figure(agent)
    
    with gr.Blocks(title="Q-Learning GridWorld Simulator") as demo:
        gr.Markdown("# Q-Learning GridWorld Simulator")
        
        with gr.Tab("Environment Setup"):
            with gr.Row():
                with gr.Column():
                    grid_height = gr.Slider(minimum=3, maximum=8, value=4, step=1, label="Grid Height")
                    grid_width = gr.Slider(minimum=3, maximum=8, value=4, step=1, label="Grid Width")
                    setup_btn = gr.Button("Setup Environment")
                
                env_display = gr.Plot(value=init_env_fig, label="Environment")
            
            with gr.Row():
                setup_info = gr.Textbox(label="Environment Info", value="4x4 GridWorld with start at (0,0) and goal at (3,3)")
        
        with gr.Tab("Train Agent"):
            with gr.Row():
                with gr.Column():
                    learning_rate = gr.Slider(minimum=0.01, maximum=1.0, value=0.1, step=0.01, label="Learning Rate (α)")
                    discount_factor = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.01, label="Discount Factor (γ)")
                    exploration_rate = gr.Slider(minimum=0.1, maximum=1.0, value=1.0, step=0.01, label="Initial Exploration Rate (ε)")
                    exploration_decay = gr.Slider(minimum=0.9, maximum=0.999, value=0.995, step=0.001, label="Exploration Decay Rate")
                    episodes = gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Number of Episodes")
                    train_btn = gr.Button("Train Agent")
            
            with gr.Row():
                train_env_display = gr.Plot(label="Training Environment")
                train_metrics_display = gr.Plot(label="Training Metrics")
            
            train_log = gr.Textbox(label="Training Log", lines=10)
        
        with gr.Tab("Test Agent"):
            with gr.Row():
                test_btn = gr.Button("Test Trained Agent")
            
            with gr.Row():
                test_env_display = gr.Plot(label="Test Environment")
            
            with gr.Row():
                with gr.Column():
                    path_display = gr.Textbox(label="Path Taken", lines=10)
                    test_result = gr.Textbox(label="Test Result")
        
        # Setup environment callback
        def setup_environment(height, width):
            nonlocal env, agent
            env = GridWorld(height=int(height), width=int(width))
            agent = QLearningAgent(
                n_states=env.n_states,
                n_actions=env.n_actions,
                learning_rate=0.1,
                discount_factor=0.9,
                exploration_rate=1.0,
                exploration_decay=0.995
            )
            env_fig = create_gridworld_figure(env, agent)
            info_text = f"{height}x{width} GridWorld with start at (0,0) and goal at ({height-1},{width-1})"
            if env.obstacles:
                info_text += f"\nObstacles at: {env.obstacles}"
            return env_fig, info_text
        
        setup_btn.click(
            setup_environment,
            inputs=[grid_height, grid_width],
            outputs=[env_display, setup_info]
        )
        
        # Train agent callback
        def start_training(lr, df, er, ed, eps):
            nonlocal env, agent
            agent = QLearningAgent(
                n_states=env.n_states,
                n_actions=env.n_actions,
                learning_rate=float(lr),
                discount_factor=float(df),
                exploration_rate=float(er),
                exploration_decay=float(ed)
            )
            env_fig, metrics_fig, log = train_agent(env, agent, int(eps))
            return env_fig, metrics_fig, log
        
        train_btn.click(
            start_training,
            inputs=[learning_rate, discount_factor, exploration_rate, exploration_decay, episodes],
            outputs=[train_env_display, train_metrics_display, train_log]
        )
        
        # Test agent callback
        def test_trained_agent():
            nonlocal env, agent
            env_fig, path_text, result = run_test_episode(env, agent)
            return env_fig, path_text, result
        
        test_btn.click(
            test_trained_agent,
            inputs=[],
            outputs=[test_env_display, path_display, test_result]
        )
    
    return demo

if __name__ == "__main__":
    # Install required packages
    # !pip install gradio matplotlib numpy
    
    # Create and launch the UI
    demo = create_ui()
    demo.launch(share=True)