import gradio as gr import cv2 import requests import os import torch import ultralytics model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt", force_reload=False) model.conf = 0.20 # NMS confidence threshold path = [['img/test-image.jpg'], ['img/test-image-2.jpg']] # def show_preds_image(image_path): # image = cv2.imread(image_path) # outputs = model.predict(source=image_path) # results = outputs[0].cpu().numpy() # for i, det in enumerate(results.boxes.xyxy): # cv2.rectangle( # image, # (int(det[0]), int(det[1])), # (int(det[2]), int(det[3])), # color=(0, 0, 255), # thickness=2, # lineType=cv2.LINE_AA # ) # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def show_preds_image(image_path): # perform inference image_path = path results = model(image_path, size=640) # Results results.print() results.xyxy[0] # img1 predictions (tensor) results.pandas().xyxy[0] # img1 predictions (pandas) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] return results.show() inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Pothole detector", examples=path, cache_examples=False, ) interface_image.launch()