import gradio as gr import cv2 import requests import os from PIL import Image import torch import ultralytics model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt", force_reload=False) model.conf = 0.20 # NMS confidence threshold path = [['img/test-image.jpg']] def show_preds_image(im): results = model(im) # inference return results.render()[0] inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="filepath", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Cashew Disease Detection", examples=path, cache_examples=False, ) interface_image.launch()