File size: 131,205 Bytes
833d7c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
#include <cstddef>
#include <cstdint>
#include <limits>
#include <stdint.h>
#include <stdio.h>
#include <atomic>
#include <assert.h>

#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>

#include "ggml-cuda.h"
#include "ggml.h"

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");

#define CUDA_CHECK(err)                                                                 \
    do {                                                                                \
        cudaError_t err_ = (err);                                                       \
        if (err_ != cudaSuccess) {                                                      \
            fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
                cudaGetErrorString(err_));                                              \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)

#if CUDART_VERSION >= 12000
#define CUBLAS_CHECK(err)                                                               \
    do {                                                                                \
        cublasStatus_t err_ = (err);                                                    \
        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
            fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n",                         \
                    err_, __FILE__, __LINE__, cublasGetStatusString(err_));             \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)
#else
#define CUBLAS_CHECK(err)                                                               \
    do {                                                                                \
        cublasStatus_t err_ = (err);                                                    \
        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
            fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);  \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)
#endif // CUDART_VERSION >= 11

#ifdef GGML_CUDA_DMMV_F16
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif //GGML_CUDA_DMMV_F16

typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
typedef void (*ggml_cuda_op_t)(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
    float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main);

// QK = number of values after dequantization
// QR = QK / number of values before dequantization
// QI = number of 32 bit integers before dequantization

#define QK4_0 32
#define QR4_0 2
#define QI4_0 4
typedef struct {
    half    d;              // delta
    uint8_t qs[QK4_0 / 2];  // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");

#define QK4_1 32
#define QR4_1 2
#define QI4_1 4
typedef struct {
    half    d;              // delta
    half    m;              // min
    uint8_t qs[QK4_1 / 2];  // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");

#define QK5_0 32
#define QR5_0 2
#define QI5_0 4
typedef struct {
    half d;                 // delta
    uint8_t qh[4];          // 5-th bit of quants
    uint8_t qs[QK5_0 / 2];  // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");

#define QK5_1 32
#define QR5_1 2
#define QI5_1 4
typedef struct {
    half d;                 // delta
    half m;                 // min
    uint8_t qh[4];          // 5-th bit of quants
    uint8_t qs[QK5_1 / 2];  // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");

#define QK8_0 32
#define QR8_0 1
#define QI8_0 8
typedef struct {
    half    d;              // delta
    int8_t  qs[QK8_0];      // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");

#define QK8_1 32
#define QR8_1 1
#define QI8_1 8
typedef struct {
    half    d;              // delta
    half    s;              // unquantized sum
    int8_t  qs[QK8_0];      // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");

typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs);

//================================= k-quants

#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif

typedef struct {
    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
    uint8_t qs[QK_K/4];      // quants
    half d;                  // super-block scale for quantized scales
    half dmin;               // super-block scale for quantized mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");

typedef struct {
    uint8_t hmask[QK_K/8];     // quants - high bit
    uint8_t qs[QK_K/4];        // quants - low 2 bits
#ifdef GGML_QKK_64
    uint8_t scales[2]; // scales, quantized with 8 bits
#else
    uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
#endif
    half d;             // super-block scale
} block_q3_K;
//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");

#ifdef GGML_QKK_64
typedef struct {
    half    d[2];              // super-block scales/mins
    uint8_t scales[2];         // 4-bit block scales/mins
    uint8_t qs[QK_K/2];        // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
    half d;                    // super-block scale for quantized scales
    half dmin;                 // super-block scale for quantized mins
    uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
    uint8_t qs[QK_K/2];        // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
#endif

#ifdef GGML_QKK_64
typedef struct {
    half d;                  // super-block scale
    int8_t scales[QK_K/16];  // block scales
    uint8_t qh[QK_K/8];      // quants, high bit
    uint8_t qs[QK_K/2];      // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
    half d;               // super-block scale for quantized scales
    half dmin;            // super-block scale for quantized mins
    uint8_t scales[K_SCALE_SIZE];   // scales and mins, quantized with 6 bits
    uint8_t qh[QK_K/8];          // quants, high bit
    uint8_t qs[QK_K/2];          // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif

typedef struct {
    uint8_t ql[QK_K/2];   // quants, lower 4 bits
    uint8_t qh[QK_K/4];   // quants, upper 2 bits
    int8_t  scales[QK_K/16]; // scales
    half    d;         // delta
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");

#define WARP_SIZE 32
#define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses

#define CUDA_ADD_BLOCK_SIZE 256
#define CUDA_MUL_BLOCK_SIZE 256
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
#define CUDA_QUANTIZE_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256

// dmmv = dequantize_mul_mat_vec
#ifndef GGML_CUDA_DMMV_X
#define GGML_CUDA_DMMV_X 32
#endif
#ifndef GGML_CUDA_MMV_Y
#define GGML_CUDA_MMV_Y 1
#endif

#ifndef K_QUANTS_PER_ITERATION
#define K_QUANTS_PER_ITERATION 2
#else
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
#endif

struct ggml_tensor_extra_gpu {
    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
    cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
};

static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = x[i] + y[i];
}

static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = __hadd(x[i], __float2half(y[i]));
}

static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= kx) {
        return;
    }
    dst[i] = x[i] * y[i%ky];
}

static __global__ void silu_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = x[i] / (1.0f + expf(-x[i]));
}

static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
    const int row = blockIdx.x*blockDim.y + threadIdx.y;
    const int tid = threadIdx.x;

    const float eps = 1e-6;

    float tmp = 0.0f; // partial sum for thread in warp

    for (int i = 0; i < ncols; i += WARP_SIZE) {
        const int col = i + tid;
        const float xi = x[row*ncols + col];
        tmp += xi * xi;
    }

    // sum up partial sums
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    const float mean = tmp / ncols;
    const float scale = 1.0f / sqrtf(mean + eps);

    for (int i = 0; i < ncols; i += WARP_SIZE) {
        const int col = i + tid;
        dst[row*ncols + col] = scale * x[row*ncols + col];
    }
}

static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q4_0 * x = (const block_q4_0 *) vx;

    const dfloat d = x[ib].d;

    const int vui = x[ib].qs[iqs];

    v.x = vui & 0xF;
    v.y = vui >> 4;

#ifdef GGML_CUDA_DMMV_F16
    v = __hsub2(v, {8.0f, 8.0f});
    v = __hmul2(v, {d, d});
#else
    v.x = (v.x - 8.0f) * d;
    v.y = (v.y - 8.0f) * d;
#endif // GGML_CUDA_DMMV_F16
}

static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q4_1 * x = (const block_q4_1 *) vx;

    const dfloat d = x[ib].d;
    const dfloat m = x[ib].m;

    const int vui = x[ib].qs[iqs];

    v.x = vui & 0xF;
    v.y = vui >> 4;

#ifdef GGML_CUDA_DMMV_F16
    v = __hmul2(v, {d, d});
    v = __hadd2(v, {m, m});
#else
    v.x = (v.x * d) + m;
    v.y = (v.y * d) + m;
#endif // GGML_CUDA_DMMV_F16
}

static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q5_0 * x = (const block_q5_0 *) vx;

    const dfloat d = x[ib].d;

    uint32_t qh;
    memcpy(&qh, x[ib].qh, sizeof(qh));

    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;

    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);

#ifdef GGML_CUDA_DMMV_F16
    v = __hsub2(v, {16.0f, 16.0f});
    v = __hmul2(v, {d, d});
#else
    v.x = (v.x - 16.0f) * d;
    v.y = (v.y - 16.0f) * d;
#endif // GGML_CUDA_DMMV_F16
}

static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q5_1 * x = (const block_q5_1 *) vx;

    const dfloat d = x[ib].d;
    const dfloat m = x[ib].m;

    uint32_t qh;
    memcpy(&qh, x[ib].qh, sizeof(qh));

    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;

    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);

#ifdef GGML_CUDA_DMMV_F16
    v = __hmul2(v, {d, d});
    v = __hadd2(v, {m, m});
#else
    v.x = (v.x * d) + m;
    v.y = (v.y * d) + m;
#endif // GGML_CUDA_DMMV_F16
}

static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q8_0 * x = (const block_q8_0 *) vx;

    const dfloat d = x[ib].d;

    v.x = x[ib].qs[iqs + 0];
    v.y = x[ib].qs[iqs + 1];

#ifdef GGML_CUDA_DMMV_F16
    v = __hmul2(v, {d, d});
#else
    v.x *= d;
    v.y *= d;
#endif // GGML_CUDA_DMMV_F16
}

//================================== k-quants

static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {

    const int i   = blockIdx.x;
    const block_q2_K * x = (const block_q2_K *) vx;

    const int tid = threadIdx.x;
#if QK_K == 256
    const int n   = tid/32;
    const int l   = tid - 32*n;
    const int is  = 8*n + l/16;

    const uint8_t q = x[i].qs[32*n + l];
    float * y = yy + i*QK_K + 128*n;

    float dall = x[i].d;
    float dmin = x[i].dmin;
    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else
    const int is = tid/16;  // 0 or 1
    const int il = tid%16;  // 0...15
    const uint8_t q = x[i].qs[il] >> (2*is);
    float * y = yy + i*QK_K + 16*is + il;
    float dall = x[i].d;
    float dmin = x[i].dmin;
    y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
    y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif

}

static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {

    const int i = blockIdx.x;
    const block_q3_K * x = (const block_q3_K *) vx;

#if QK_K == 256
    const int r = threadIdx.x/4;
    const int tid = r/2;
    const int is0 = r%2;
    const int l0 = 16*is0 + 4*(threadIdx.x%4);
    const int n = tid / 4;
    const int j = tid - 4*n;

    uint8_t m = 1 << (4*n + j);
    int is = 8*n + 2*j + is0;
    int shift = 2*j;

    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
    float d_all = x[i].d;
    float dl = d_all * (us - 32);

    float * y = yy + i*QK_K + 128*n + 32*j;
    const uint8_t * q = x[i].qs + 32*n;
    const uint8_t * hm = x[i].hmask;

    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else
    const int tid = threadIdx.x;
    const int is  = tid/16;  // 0 or 1
    const int il  = tid%16;  // 0...15
    const int im  = il/8;    // 0...1
    const int in  = il%8;    // 0...7

    float * y = yy + i*QK_K + 16*is + il;

    const uint8_t q = x[i].qs[il] >> (2*is);
    const uint8_t h = x[i].hmask[in] >> (2*is + im);
    const float   d = (float)x[i].d;

    if (is == 0) {
        y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
        y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
    } else {
        y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
        y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
    }
#endif

}

#if QK_K == 256
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
    if (j < 4) {
        d = q[j] & 63; m = q[j + 4] & 63;
    } else {
        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
    }
}
#endif

static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
    const block_q4_K * x = (const block_q4_K *) vx;

    const int i = blockIdx.x;

#if QK_K == 256
    // assume 32 threads
    const int tid = threadIdx.x;
    const int il  = tid/8;
    const int ir  = tid%8;
    const int is  = 2*il;
    const int n   = 4;

    float * y = yy + i*QK_K + 64*il + n*ir;

    const float dall = x[i].d;
    const float dmin = x[i].dmin;

    const uint8_t * q = x[i].qs + 32*il + n*ir;

    uint8_t sc, m;
    get_scale_min_k4(is + 0, x[i].scales, sc, m);
    const float d1 = dall * sc; const float m1 = dmin * m;
    get_scale_min_k4(is + 1, x[i].scales, sc, m);
    const float d2 = dall * sc; const float m2 = dmin * m;
    for (int l = 0; l < n; ++l) {
        y[l + 0] = d1 * (q[l] & 0xF) - m1;
        y[l +32] = d2 * (q[l] >>  4) - m2;
    }
#else
    const int tid = threadIdx.x;
    const uint8_t * q = x[i].qs;
    float * y = yy + i*QK_K;
    const float d = (float)x[i].d[0];
    const float m = (float)x[i].d[1];
    y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
    y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
#endif
}

static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
    const block_q5_K * x = (const block_q5_K *) vx;

    const int i = blockIdx.x;

#if QK_K == 256
    // assume 64 threads - this is very slightly better than the one below
    const int tid = threadIdx.x;
    const int il  = tid/16;   // il is in 0...3
    const int ir  = tid%16;   // ir is in 0...15
    const int is  = 2*il;     // is is in 0...6

    float * y = yy + i*QK_K + 64*il + 2*ir;

    const float dall = x[i].d;
    const float dmin = x[i].dmin;

    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
    const uint8_t * qh = x[i].qh + 2*ir;

    uint8_t sc, m;
    get_scale_min_k4(is + 0, x[i].scales, sc, m);
    const float d1 = dall * sc; const float m1 = dmin * m;
    get_scale_min_k4(is + 1, x[i].scales, sc, m);
    const float d2 = dall * sc; const float m2 = dmin * m;

    uint8_t   hm  = 1 << (2*il);
    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
    hm <<= 1;
    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
    const int tid = threadIdx.x;
    const uint8_t q = x[i].qs[tid];
    const int im = tid/8;  // 0...3
    const int in = tid%8;  // 0...7
    const int is = tid/16; // 0 or 1
    const uint8_t h = x[i].qh[in] >> im;
    const float d = x[i].d;
    float * y = yy + i*QK_K + tid;
    y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
    y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}

static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
    const block_q6_K * x = (const block_q6_K *) vx;

    const int i = blockIdx.x;
#if QK_K == 256

    // assume 64 threads - this is very slightly better than the one below
    const int tid = threadIdx.x;
    const int ip  = tid/32;   // ip is 0 or 1
    const int il  = tid - 32*ip; // 0...32
    const int is  = 8*ip + il/16;

    float * y = yy + i*QK_K + 128*ip + il;

    const float d = x[i].d;

    const uint8_t * ql = x[i].ql + 64*ip + il;
    const uint8_t   qh = x[i].qh[32*ip + il];
    const int8_t  * sc = x[i].scales + is;

    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
#else

    // assume 32 threads
    const int tid = threadIdx.x;
    const int ip  = tid/16;         // 0 or 1
    const int il  = tid - 16*ip;    // 0...15

    float * y = yy + i*QK_K + 16*ip + il;

    const float d = x[i].d;

    const uint8_t   ql = x[i].ql[16*ip + il];
    const uint8_t   qh = x[i].qh[il] >> (2*ip);
    const int8_t  * sc = x[i].scales;

    y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
    y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
#endif
}

static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;

    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q2_K * x = (const block_q2_K *)vx + ib0;

    float tmp = 0; // partial sum for thread in warp

#if QK_K == 256
    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1

    const int step = 16/K_QUANTS_PER_ITERATION;

    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const int in = tid - step*im;                        // 0...15 or 0...7

    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
    const int q_offset = 32*im + l0;
    const int s_offset = 8*im;
    const int y_offset = 128*im + l0;

    uint32_t aux[4];
    const uint8_t * d = (const uint8_t *)aux;
    const uint8_t * m = (const uint8_t *)(aux + 2);

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y = yy + i * QK_K + y_offset;
        const uint8_t * q = x[i].qs + q_offset;

        const float dall = x[i].d;
        const float dmin = x[i].dmin;

        const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
        aux[0] = a[0] & 0x0f0f0f0f;
        aux[1] = a[1] & 0x0f0f0f0f;
        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;

        float sum1 = 0, sum2 = 0;
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];

        }
        tmp += dall * sum1 - dmin * sum2;

    }
#else
    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
    const int offset = tid * K_QUANTS_PER_ITERATION;

    uint32_t uaux[2];
    const uint8_t * d = (const uint8_t *)uaux;

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {

        const float   * y = yy + i * QK_K + offset;
        const uint8_t * q = x[i].qs + offset;
        const uint32_t * s = (const uint32_t *)x[i].scales;

        uaux[0] = s[0] & 0x0f0f0f0f;
        uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;

        const half2 * dh = (const half2 *)&x[i].d;

        const float2 dall = __half22float2(dh[0]);

        float sum1 = 0, sum2 = 0;
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            const uint8_t ql = q[l];
            sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
                  + y[l+16] * d[1] * ((ql >> 2) & 3)
                  + y[l+32] * d[2] * ((ql >> 4) & 3)
                  + y[l+48] * d[3] * ((ql >> 6) & 3);
            sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
        }
        tmp += dall.x * sum1 - dall.y * sum2;
    }
#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;

    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q3_K * x = (const block_q3_K *)vx + ib0;

    float tmp = 0; // partial sum for thread in warp

#if QK_K == 256

    const uint16_t kmask1 = 0x0303;
    const uint16_t kmask2 = 0x0f0f;

    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1

    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
    const int step = 16/K_QUANTS_PER_ITERATION;
    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const int in = tid - step*im;                        // 0....15 or 0...7

    const uint8_t m = 1 << (4*im);

    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
    const int q_offset =  32*im + l0;
    const int y_offset = 128*im + l0;

    uint16_t utmp[4];
    const int8_t * s = (const int8_t *)utmp;

    const uint16_t s_shift = 4*im;

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y  = yy + i * QK_K + y_offset;
        const uint8_t * q = x[i].qs + q_offset;
        const uint8_t * h = x[i].hmask + l0;

        const uint16_t * a = (const uint16_t *)x[i].scales;
        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);

        const float d = x[i].d;

        float sum = 0;
        for (int l = 0; l < n; ++l) {
            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
        }
        tmp += d * sum;

    }
#else

    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
    const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
    const int in = offset/8;                                 // 0 or 1
    const int im = offset%8;                                 // 0...7

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {

        const float   * y = yy + i * QK_K + offset;
        const uint8_t * q = x[i].qs + offset;
        const uint8_t * s = x[i].scales;

        const float dall = (float)x[i].d;

        float sum = 0;
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            const uint8_t hl = x[i].hmask[im+l] >> in;
            const uint8_t ql = q[l];
            sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
                 + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
                 + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
                 + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
        }
        tmp += sum;
    }
#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;
    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q4_K * x = (const block_q4_K *)vx + ib0;

#if QK_K == 256
    const uint16_t kmask1 = 0x3f3f;
    const uint16_t kmask2 = 0x0f0f;
    const uint16_t kmask3 = 0xc0c0;

    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1

    const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4

    const int il  = tid/step;                            // 0...3
    const int ir  = tid - step*il;                       // 0...7 or 0...3
    const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4

    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
    const int in = il%2;

    const int l0 = n*(2*ir + in);
    const int q_offset = 32*im + l0;
    const int y_offset = 64*im + l0;

    uint16_t aux[4];
    const uint8_t * sc = (const uint8_t *)aux;

    float tmp = 0; // partial sum for thread in warp

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const uint8_t * q1 = x[i].qs + q_offset;
        const uint8_t * q2 = q1 + 64;
        const float   * y1 = yy + i*QK_K + y_offset;
        const float   * y2 = y1 + 128;

        const float dall = x[i].d;
        const float dmin = x[i].dmin;

        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux[0] = a[im+0] & kmask1;
        aux[1] = a[im+2] & kmask1;
        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);

        float4 s = {0.f, 0.f, 0.f, 0.f};
        float smin = 0;
        for (int l = 0; l < n; ++l) {
            s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
            s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
        }
        tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;

    }
#else
    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);

    const int step = tid * K_QUANTS_PER_ITERATION;

    uint16_t aux16[2];
    const uint8_t * s = (const uint8_t *)aux16;

    float tmp = 0;

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
        const uint8_t * q = x[i].qs + step;
        const float   * y = yy + i*QK_K + step;
        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux16[0] = a[0] & 0x0f0f;
        aux16[1] = (a[0] >> 4) & 0x0f0f;
        const float d = (float)x[i].d[0];
        const float m = (float)x[i].d[1];
        float sum = 0.f;
        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
            sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
                 + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
                 + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
                 + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
        }
        tmp += sum;
    }

#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (tid == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {

    const int row = blockIdx.x;
    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q5_K * x = (const block_q5_K *)vx + ib0;

    float tmp = 0; // partial sum for thread in warp

#if QK_K == 256
    const uint16_t kmask1 = 0x3f3f;
    const uint16_t kmask2 = 0x0f0f;
    const uint16_t kmask3 = 0xc0c0;

    const int tid = threadIdx.x/2;  // 0...15
    const int ix  = threadIdx.x%2;

    const int il  = tid/4;     // 0...3
    const int ir  = tid - 4*il;// 0...3
    const int n   = 2;

    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
    const int in = il%2;

    const int l0 = n*(2*ir + in);
    const int q_offset = 32*im + l0;
    const int y_offset = 64*im + l0;

    const uint8_t hm1  = 1 << (2*im);
    const uint8_t hm2  = hm1 << 4;

    uint16_t aux[4];
    const uint8_t * sc = (const uint8_t *)aux;

    for (int i = ix; i < num_blocks_per_row; i += 2) {

        const uint8_t * ql1 = x[i].qs + q_offset;
        const uint8_t * ql2 = ql1 + 64;
        const uint8_t * qh  = x[i].qh + l0;
        const float   * y1  = yy + i*QK_K + y_offset;
        const float   * y2  = y1 + 128;

        const float dall = x[i].d;
        const float dmin = x[i].dmin;

        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux[0] = a[im+0] & kmask1;
        aux[1] = a[im+2] & kmask1;
        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);

        float4 sum = {0.f, 0.f, 0.f, 0.f};
        float smin = 0;
        for (int l = 0; l < n; ++l) {
            sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
                   + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
            sum.y += y1[l+32] * ((ql1[l+ 0] >>  4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
                   + y1[l+48] * ((ql1[l+16] >>  4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
            sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
                   + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
            sum.w += y2[l+32] * ((ql2[l+ 0] >>  4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
                   + y2[l+48] * ((ql2[l+16] >>  4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
        }
        tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
    }

#else
    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
    const int step = tid * K_QUANTS_PER_ITERATION;
    const int im = step/8;
    const int in = step%8;

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
        const uint8_t * q = x[i].qs + step;
        const int8_t  * s = x[i].scales;
        const float   * y = yy + i*QK_K + step;
        const float     d = x[i].d;
        float sum = 0.f;
        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
            const uint8_t h = x[i].qh[in+j] >> im;
            sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
                 + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
                 + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
                 + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
        }
        tmp += sum;
    }
#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;

    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q6_K * x = (const block_q6_K *)vx + ib0;

#if QK_K == 256

    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1

    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8

    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const int in = tid - step*im;                        // 0...15 or 0...7

#if K_QUANTS_PER_ITERATION == 1
    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
    const int is = 0;
#else
    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
    const int is = in / 4;
#endif
    const int ql_offset = 64*im + l0;
    const int qh_offset = 32*im + l0;
    const int s_offset  =  8*im + is;
    const int y_offset = 128*im + l0;

    float tmp = 0; // partial sum for thread in warp

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y  = yy + i * QK_K + y_offset;
        const uint8_t * ql = x[i].ql + ql_offset;
        const uint8_t * qh = x[i].qh + qh_offset;
        const int8_t  * s  = x[i].scales + s_offset;

        const float d = x[i].d;

#if K_QUANTS_PER_ITERATION == 1
        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
        tmp += sum;
#else
        float sum = 0;
        for (int l = 0; l < 4; ++l) {
            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
        }
        tmp += sum;
#endif

    }

#else

    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3

    const int step = tid * K_QUANTS_PER_ITERATION;

    float tmp = 0; // partial sum for thread in warp

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {

        const float   * y  = yy + i * QK_K + step;
        const uint8_t * ql = x[i].ql + step;
        const uint8_t * qh = x[i].qh + step;
        const int8_t  * s  = x[i].scales;

        const float d = x[i+0].d;

        float sum = 0;
        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
            sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
                 + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
                 + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
                 + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
        }
        tmp += sum;

    }

#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (tid == 0) {
        dst[row] = tmp;
    }
}

static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const half * x = (const half *) vx;

    // automatic half -> float type cast if dfloat == float
    v.x = x[ib + iqs + 0];
    v.y = x[ib + iqs + 1];
}

static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int ndata, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    block_q8_1 * y = (block_q8_1 *) vy;

    const int ib = i / QK8_1; // block index
    const int iqs = i % QK8_1; // quant index

    const float xi = i < ndata ? x[i] : 0.0f;
    float amax = fabsf(xi);
    float sum = xi;

#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
        sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
    }

    const float d = amax / 127;
    const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);

    y[ib].qs[iqs] = q;

    if (iqs > 0) {
        return;
    }

    y[ib].d = d;
    y[ib].s = sum;
}

template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
    const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;

    if (i >= k) {
        return;
    }

    const int ib = i/qk; // block index
    const int iqs = (i%qk)/qr; // quant index
    const int iybs = i - i%qk; // y block start index
    const int y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    dfloat2 v;
    dequantize_kernel(vx, ib, iqs, v);

    y[iybs + iqs + 0]        = v.x;
    y[iybs + iqs + y_offset] = v.y;
}

static __device__ __forceinline__ float vec_dot_q4_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
    const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;

    int vi;
    memcpy(&vi,  &bq4_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
    const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
    const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_0)]);

    const float d = __half2float(bq4_0->d) * __half2float(bq8_1->d);

    // subtract 8 from each quantized value
    const int vi0 = __vsub4((vi >> 0) & 0x0F0F0F0F, 0x08080808);
    const int vi1 = __vsub4((vi >> 4) & 0x0F0F0F0F, 0x08080808);

    // SIMD dot product of quantized values
    int sumi = __dp4a(vi0, ui0, 0);
    sumi     = __dp4a(vi1, ui1, sumi);

    return sumi*d;
#else
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= 600
}

static __device__ __forceinline__ float vec_dot_q4_1_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
    const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;

    const int vi  = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]);
    const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
    const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_1)]);

    const float d = __half2float(bq4_1->d) * __half2float(bq8_1->d);
    const float m = bq4_1->m;
    const float s = bq8_1->s;

    const int vi0 = (vi >> 0) & 0x0F0F0F0F;
    const int vi1 = (vi >> 4) & 0x0F0F0F0F;

    // SIMD dot product of quantized values
    int sumi = __dp4a(vi0, ui0, 0);
    sumi     = __dp4a(vi1, ui1, sumi);

    return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block
#else
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= 600
}

static __device__ __forceinline__ float vec_dot_q5_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
    const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;

    int qs;
    memcpy(&qs, &bq5_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
    const int qh0 = bq5_0->qh[iqs/2 + 0] >> 4*(iqs%2);
    const int qh1 = bq5_0->qh[iqs/2 + 2] >> 4*(iqs%2);
    const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
    const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_0)]);

    const float d = __half2float(bq5_0->d) * __half2float(bq8_1->d);

    int vi0 = (qs  >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits
    vi0    |= (qh0 <<  4) & 0x00000010; // 1 ->  5
    vi0    |= (qh0 << 11) & 0x00001000; // 2 -> 13
    vi0    |= (qh0 << 18) & 0x00100000; // 3 -> 21
    vi0    |= (qh0 << 25) & 0x10000000; // 4 -> 29
    vi0     = __vsub4(vi0,  0x10101010); // subtract 16 from quantized values
    int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values

    int vi1 = (qs  >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits
    vi1    |= (qh1 <<  4) & 0x00000010; // 1 ->  5
    vi1    |= (qh1 << 11) & 0x00001000; // 2 -> 13
    vi1    |= (qh1 << 18) & 0x00100000; // 3 -> 21
    vi1    |= (qh1 << 25) & 0x10000000; // 4 -> 29
    vi1     = __vsub4(vi1,  0x10101010); // subtract 16 from quantized values
    sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values

    return sumi*d;
#else
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= 600
}

static __device__ __forceinline__ float vec_dot_q5_1_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
    const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;

    const int qs  = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]);
    const int qh0 = bq5_1->qh[iqs/2 + 0] >> 4*(iqs%2);
    const int qh1 = bq5_1->qh[iqs/2 + 2] >> 4*(iqs%2);
    const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
    const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_1)]);

    const float d = __half2float(bq5_1->d) * __half2float(bq8_1->d);
    const float m = bq5_1->m;
    const float s = bq8_1->s;

    int vi0 = (qs  >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits
    vi0    |= (qh0 <<  4) & 0x00000010; // 1 ->  5
    vi0    |= (qh0 << 11) & 0x00001000; // 2 -> 13
    vi0    |= (qh0 << 18) & 0x00100000; // 3 -> 21
    vi0    |= (qh0 << 25) & 0x10000000; // 4 -> 29
    int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values

    int vi1 = (qs  >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits
    vi1    |= (qh1 <<  4) & 0x00000010; // 1 ->  5
    vi1    |= (qh1 << 11) & 0x00001000; // 2 -> 13
    vi1    |= (qh1 << 18) & 0x00100000; // 3 -> 21
    vi1    |= (qh1 << 25) & 0x10000000; // 4 -> 29
    sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values

    return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block
#else
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= 600
}

static __device__ __forceinline__ float vec_dot_q8_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
#if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
    const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;

    int vi;
    memcpy(&vi,  &bq8_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
    const int ui = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);

    const float d = __half2float(bq8_0->d) * __half2float(bq8_1->d);

    // SIMD dot product of quantized values
    int sumi = __dp4a(vi, ui, 0);

    return sumi*d;
#else
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= 600
}

template <int qk, int qi, typename block_q_t, vec_dot_q_cuda_t vec_dot_q_cuda>
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
    const int row = blockIdx.y*blockDim.y + threadIdx.y;

    if (row >= nrows) {
        return;
    }

    const int blocks_per_row = ncols / qk;
    const int blocks_per_warp = WARP_SIZE / qi;

// partial sum for each thread
    float tmp = 0.0f;

    const block_q_t  * x = (const block_q_t  *) vx;
    const block_q8_1 * y = (const block_q8_1 *) vy;

    for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
        const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index

        const int iby = i + threadIdx.x / qi; // y block index

        const int iqs  = threadIdx.x % qi; // x block quant index when casting the quants to int

        tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
    }

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
    // qk = quantized weights per x block
    // qr = number of quantized weights per data value in x block
    const int row = blockIdx.y*blockDim.y + threadIdx.y;

    if (row >= nrows) {
        return;
    }

    const int tid = threadIdx.x;

    const int iter_stride = 2*GGML_CUDA_DMMV_X;
    const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
    const int y_offset = qr == 1 ? 1 : qk/2;

// partial sum for each thread
#ifdef GGML_CUDA_DMMV_F16
    half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
    float tmp = 0.0f;
#endif // GGML_CUDA_DMMV_F16

    for (int i = 0; i < ncols; i += iter_stride) {
        const int col = i + vals_per_iter*tid;
        const int ib = (row*ncols + col)/qk; // x block index
        const int iqs = (col%qk)/qr; // x quant index
        const int iybs = col - col%qk; // y block start index

// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
        for (int j = 0; j < vals_per_iter; j += 2) {
            // process 2 vals per j iter

            // dequantize
            // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
            dfloat2 v;
            dequantize_kernel(vx, ib, iqs + j/qr, v);

            // matrix multiplication
            // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_DMMV_F16
            tmp += __hmul2(v, {
                y[iybs + iqs + j/qr + 0],
                y[iybs + iqs + j/qr + y_offset]
            });
#else
            tmp += v.x * y[iybs + iqs + j/qr + 0];
            tmp += v.y * y[iybs + iqs + j/qr + y_offset];
#endif // GGML_CUDA_DMMV_F16
        }
    }

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (tid == 0) {
#ifdef GGML_CUDA_DMMV_F16
        dst[row] = tmp.x + tmp.y;
#else
        dst[row] = tmp;
#endif // GGML_CUDA_DMMV_F16
    }
}

static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
    const half * x = (const half *) vx;

    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
    const int channel = blockDim.z*blockIdx.z + threadIdx.z;

    const int nrows_y = ncols_x;
    const int nrows_dst = nrows_x;
    const int row_dst = row_x;

    float tmp = 0.0f;

    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
        const int col_x = col_x0 + threadIdx.x;

        if (col_x >= ncols_x) {
            break;
        }

        // x is transposed and permuted
        const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
        const float xi = __half2float(x[ix]);

        const int row_y = col_x;


        // y is not transposed but permuted
        const int iy = channel*nrows_y + row_y;

        tmp += xi * y[iy];
    }

    // dst is not transposed and not permuted
    const int idst = channel*nrows_dst + row_dst;

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[idst] = tmp;
    }
}

static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
    const int row_stride_x, const int channel_stride_x) {

    const half * x = (const half *) vx;

    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
    const int channel = blockDim.z*blockIdx.z + threadIdx.z;

    const int nrows_y = ncols_x;
    const int nrows_dst = nrows_x;
    const int row_dst = row_x;

    const int idst = channel*nrows_dst + row_dst;

    float tmp = 0.0f;

    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
        const int col_x = col_x0 + threadIdx.x;

        if (col_x >= ncols_x) {
            break;
        }

        const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
        const float xi = __half2float(x[ix]);

        const int row_y = col_x;

        const int iy = channel*nrows_y + row_y;

        tmp += xi * y[iy];
    }

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[idst] = tmp;
    }
}

static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    float * dsti = (float *) cdsti;

    *dsti = *xi;
}

static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    half * dsti = (half *) cdsti;

    *dsti = __float2half(*xi);
}

template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
                                   const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
                                   const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= ne) {
        return;
    }

    // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
    // then combine those indices with the corresponding byte offsets to get the total offsets
    const int i02 = i / (ne00*ne01);
    const int i01 = (i - i02*ne01*ne00) / ne00;
    const int i00 = i - i02*ne01*ne00 - i01*ne00;
    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;

    const int i12 = i / (ne10*ne11);
    const int i11 = (i - i12*ne10*ne11) / ne10;
    const int i10 = i - i12*ne10*ne11 - i11*ne10;
    const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;

    cpy_1(cx + x_offset, cdst + dst_offset);
}

// rope == RoPE == rotary positional embedding
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
    const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);

    if (col >= ncols) {
        return;
    }

    const int row = blockDim.y*blockIdx.y + threadIdx.y;
    const int i = row*ncols + col;

    const float theta = p*powf(theta_scale, col/2);
    const float sin_theta = sinf(theta);
    const float cos_theta = cosf(theta);

    const float x0 = x[i + 0];
    const float x1 = x[i + 1];

    dst[i + 0] = x0*cos_theta - x1*sin_theta;
    dst[i + 1] = x0*sin_theta + x1*cos_theta;
}

static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
    const int col = blockDim.x*blockIdx.x + threadIdx.x;
    const int row = blockDim.y*blockIdx.y + threadIdx.y;

    if (col >= ncols) {
        return;
    }

    const int i = row*ncols + col;
    // dst[i] = col > n_past + row ? -INFINITY : x[i];
    dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
}

// the CUDA soft max implementation differs from the CPU implementation
// instead of doubles floats are used
// values are also not normalized to the maximum value by subtracting it in the exponential function
// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
    const int row = blockDim.y*blockIdx.y + threadIdx.y;
    const int block_size = blockDim.x;
    const int tid = threadIdx.x;

    float tmp = 0.0;

    for (int block_start = 0; block_start < ncols; block_start += block_size) {
        const int col = block_start + tid;

        if (col >= ncols) {
            break;
        }

        const int i = row*ncols + col;
        const float val = expf(x[i]);
        tmp += val;
        dst[i] = val;
    }

    // sum up partial sums
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    for (int block_start = 0; block_start < ncols; block_start += block_size) {
        const int col = block_start + tid;

        if (col >= ncols) {
            break;
        }

        const int i = row*ncols + col;
        dst[i] /= tmp;
    }
}

static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    dst[i] = scale * x[i];
}

static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
    add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}

static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
    add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}

static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
    const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
    mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
}

static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    const dim3 block_dims(WARP_SIZE, 1, 1);
    rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
}

static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
    quantize_q8_1<<<num_blocks, CUDA_QUANTIZE_BLOCK_SIZE, 0, stream>>>(x, vy, ndata, k);
}

static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
}

static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2 / K_QUANTS_PER_ITERATION;
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2 / K_QUANTS_PER_ITERATION;
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const dim3 block_dims(32, 1, 1);
    dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
}

static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2 / K_QUANTS_PER_ITERATION;
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, vec_dot_q4_0_q8_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, vec_dot_q4_1_q8_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, vec_dot_q5_0_q8_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, vec_dot_q5_1_q8_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, vec_dot_q8_0_q8_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<1, 1, convert_f16>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
    switch (type) {
        case GGML_TYPE_Q4_0:
            return dequantize_row_q4_0_cuda;
        case GGML_TYPE_Q4_1:
            return dequantize_row_q4_1_cuda;
        case GGML_TYPE_Q5_0:
            return dequantize_row_q5_0_cuda;
        case GGML_TYPE_Q5_1:
            return dequantize_row_q5_1_cuda;
        case GGML_TYPE_Q8_0:
            return dequantize_row_q8_0_cuda;
        case GGML_TYPE_Q2_K:
            return dequantize_row_q2_K_cuda;
        case GGML_TYPE_Q3_K:
            return dequantize_row_q3_K_cuda;
        case GGML_TYPE_Q4_K:
            return dequantize_row_q4_K_cuda;
        case GGML_TYPE_Q5_K:
            return dequantize_row_q5_K_cuda;
        case GGML_TYPE_Q6_K:
            return dequantize_row_q6_K_cuda;
        case GGML_TYPE_F16:
            return convert_fp16_to_fp32_cuda;
        default:
            return nullptr;
    }
}

static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
    const dim3 block_nums(1, nrows_x, nchannels_x);
    const dim3 block_dims(WARP_SIZE, 1, 1);
    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
}

static void ggml_mul_mat_vec_nc_f16_f32_cuda(
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
    const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {

    const dim3 block_nums(1, nrows_x, nchannels_x);
    const dim3 block_dims(WARP_SIZE, 1, 1);
    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x);
}

static void ggml_cpy_f32_f32_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
}

static void ggml_cpy_f32_f16_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
}

static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
    scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}

static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
    GGML_ASSERT(nrows % 2 == 0);
    const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
    const dim3 block_nums(num_blocks_x, nrows, 1);
    rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
}

static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
    const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
    const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
    const dim3 block_nums(block_num_x, nrows_x, 1);
    diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
}

static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
    const dim3 block_dims(WARP_SIZE, 1, 1);
    const dim3 block_nums(1, nrows_x, 1);
    soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
}

// buffer pool for cuda
#define MAX_CUDA_BUFFERS 256

struct scoped_spin_lock {
    std::atomic_flag& lock;
    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
        while (lock.test_and_set(std::memory_order_acquire)) {
            ; // spin
        }
    }
    ~scoped_spin_lock() {
        lock.clear(std::memory_order_release);
    }
    scoped_spin_lock(const scoped_spin_lock&) = delete;
    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};

struct cuda_buffer {
    void * ptr = nullptr;
    size_t size = 0;
};

static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;

static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
    scoped_spin_lock lock(g_cuda_pool_lock);
    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    int best_i = -1;
    size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
    int worst_i = -1;
    size_t worst_size = 0; //largest unused buffer seen so far

    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
        cuda_buffer& b = g_cuda_buffer_pool[id][i];
        if (b.size > 0 && b.size >= size && b.size < best_size)
        {
            best_i = i;
            best_size = b.size;
        }
        if (b.size > 0 && b.size > worst_size)
        {
            worst_i = i;
            worst_size = b.size;
        }
    }
    if(best_i!=-1) //found the smallest buffer that fits our needs
    {
        cuda_buffer& b = g_cuda_buffer_pool[id][best_i];
        void * ptr = b.ptr;
        *actual_size = b.size;
        b.ptr = nullptr;
        b.size = 0;
        return ptr;
    }
    if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
    {
        cuda_buffer& b = g_cuda_buffer_pool[id][worst_i];
        b.size = 0;
        void * ptr = b.ptr;
        cudaFree(ptr);
        b.ptr = ptr = nullptr;
    }
    void * ptr;
    CUDA_CHECK(cudaMalloc((void **) &ptr, size));
    *actual_size = size;
    return ptr;
}

static void ggml_cuda_pool_free(void * ptr, size_t size) {
    scoped_spin_lock lock(g_cuda_pool_lock);
    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
        cuda_buffer& b = g_cuda_buffer_pool[id][i];
        if (b.ptr == nullptr) {
            b.ptr = ptr;
            b.size = size;
            return;
        }
    }
    fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
    CUDA_CHECK(cudaFree(ptr));
}


static void * g_scratch_buffer = nullptr;
static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
static size_t g_scratch_offset = 0;

static int g_device_count = -1;
static int g_main_device = 0;
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};

static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};

static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };

void ggml_init_cublas() {
    static bool initialized = false;

    if (!initialized) {
        CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
        GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
        int64_t total_vram = 0;
        fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
        for (int id = 0; id < g_device_count; ++id) {
            cudaDeviceProp prop;
            CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
            fprintf(stderr, "  Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);

            g_tensor_split[id] = total_vram;
            total_vram += prop.totalGlobalMem;

            g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
        }
        for (int id = 0; id < g_device_count; ++id) {
            g_tensor_split[id] /= total_vram;
        }

        for (int id = 0; id < g_device_count; ++id) {
            CUDA_CHECK(cudaSetDevice(id));

            // create main stream
            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));

            // create cublas handle
            CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
            CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
        }

        // configure logging to stdout
        // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));

        initialized = true;
    }
}

void ggml_cuda_set_tensor_split(const float * tensor_split) {
    bool all_zero = true;
    for (int i = 0; i < g_device_count; ++i) {
        if (tensor_split[i] != 0.0f) {
            all_zero = false;
            break;
        }
    }
    if (all_zero) {
        return;
    }
    float split_sum = 0.0f;
    for (int i = 0; i < g_device_count; ++i) {
        g_tensor_split[i] = split_sum;
        split_sum += tensor_split[i];
    }
    for (int i = 0; i < g_device_count; ++i) {
        g_tensor_split[i] /= split_sum;
    }
}

void * ggml_cuda_host_malloc(size_t size) {
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
        return nullptr;
    }

    void * ptr = nullptr;
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
    if (err != cudaSuccess) {
        // The allocation error can be bypassed. A null ptr will assigned out of this function.
        // This can fixed the OOM error in WSL.
        cudaGetLastError();
        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
            size/1024.0/1024.0, cudaGetErrorString(err));
        return nullptr;
    }

    return ptr;
}

void ggml_cuda_host_free(void * ptr) {
    CUDA_CHECK(cudaFreeHost(ptr));
}

static cudaError_t ggml_cuda_cpy_tensor_2d(
    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {

    cudaMemcpyKind kind;
    char * src_ptr;
    if (src->backend == GGML_BACKEND_CPU) {
        kind = cudaMemcpyHostToDevice;
        src_ptr = (char *) src->data;
    } else if (src->backend == GGML_BACKEND_GPU) {
        kind = cudaMemcpyDeviceToDevice;
        struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
        int id;
        CUDA_CHECK(cudaGetDevice(&id));
        src_ptr = (char *) extra->data_device[id];
    } else {
        GGML_ASSERT(false);
    }
    char * dst_ptr = (char *) dst;

    const int64_t ne0 = src->ne[0];
    const int64_t nb0 = src->nb[0];
    const int64_t nb1 = src->nb[1];
    const int64_t nb2 = src->nb[2];
    const int64_t nb3 = src->nb[3];
    const enum ggml_type type = src->type;
    const int64_t ts = ggml_type_size(type);
    const int64_t bs = ggml_blck_size(type);
    int64_t i1_diff = i1_high - i1_low;

    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
    if (nb0 == ts && nb1 == ts*ne0/bs) {
        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
    } else if (nb0 == ts) {
        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
    } else {
        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
            const void * rx = (const void *) ((const char *) x + i1*nb1);
            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
            // pretend the row is a matrix with cols=1
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
            if (r != cudaSuccess) return r;
        }
        return cudaSuccess;
    }
}

inline void ggml_cuda_op_add(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne0 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
        add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
        add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne0*i01_diff, cudaStream_main);
    } else {
        GGML_ASSERT(false);
    }

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_mul(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

    for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
        const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0

        float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
        float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
        float * dst_ddf_i01 = dst_ddf_i + i01*ne00;

        // compute
        mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
    }

    (void) dst;
    (void) src0_ddq_i;
    (void) i02;
}

inline void ggml_cuda_op_silu(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_rms_norm(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_mul_mat_vec(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddq_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t nrows = i01_high - i01_low;

#ifdef GGML_CUDA_FORCE_DMMV
    const bool use_mul_mat_vec_q = false;
#else
    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    const bool mul_mat_vec_q_implemented = src0->type == GGML_TYPE_Q4_0 ||
        src0->type == GGML_TYPE_Q4_1 ||
        src0->type == GGML_TYPE_Q5_0 ||
        src0->type == GGML_TYPE_Q5_1 ||
        src0->type == GGML_TYPE_Q8_0;

    const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= 600 && mul_mat_vec_q_implemented;
#endif

    if (use_mul_mat_vec_q) {
        int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1;
        padded_row_size -= padded_row_size % MATRIX_ROW_PADDING;
        size_t as;
        void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
        quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);

        switch (src0->type) {
            case GGML_TYPE_Q4_0:
                mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_1:
                mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_0:
                mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_1:
                mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q8_0:
                mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            default:
                GGML_ASSERT(false);
                break;
        }

        ggml_cuda_pool_free(src1_q8_1, as);
    } else {
        // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_DMMV_F16
        size_t ash;
        dfloat * src1_dfloat = nullptr; // dfloat == half

        bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
            src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
            src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;

        if (src1_convert_f16) {
            src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
            ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
                                    ne00, 1, sizeof(float), 0, 0,
                                    ne00, 1, sizeof(half),  0, 0, cudaStream_main);
        }
#else
        dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
#endif // GGML_CUDA_DMMV_F16

        switch (src0->type) {
            case GGML_TYPE_Q4_0:
                dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_1:
                dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_0:
                dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_1:
                dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q8_0:
                dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q2_K:
                dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q3_K:
                dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_K:
                dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_K:
                dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q6_K:
                dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_F16:
                convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            default:
                GGML_ASSERT(false);
                break;
        }

#ifdef GGML_CUDA_DMMV_F16
        if (src1_convert_f16) {
            ggml_cuda_pool_free(src1_dfloat, ash);
        }
#endif // GGML_CUDA_DMMV_F16
    }

    (void) src1;
    (void) dst;
    (void) src0_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_mul_mat_cublas(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const float alpha = 1.0f;
    const float beta = 0.0f;

    const int64_t ne00 = src0->ne[0];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

    const int64_t ne0 = dst->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    // the main device has a larger memory buffer to hold the results from all GPUs
    // ldc == nrows of the matrix that cuBLAS writes into
    int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;

    CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
    CUBLAS_CHECK(
        cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
                i01_diff, ne11, ne10,
                &alpha, src0_ddf_i, ne00,
                        src1_ddf_i, ne10,
                &beta,  dst_ddf_i,  ldc));

    (void) dst;
    (void) src0_ddq_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_rope(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    const int n_past = ((int32_t *) src1->data)[0];
    const int n_dims = ((int32_t *) src1->data)[1];
    const int mode   = ((int32_t *) src1->data)[2];
    const int n_ctx  = ((int32_t *) src1->data)[3];
    GGML_ASSERT(mode == 0);

    const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx);
    const float p0 = ((mode & 1) == 0 ? n_past + i02 : i02);

    const float p = get_ntk_rope_scale_mode()?p0:(n_ctx <= GGML_TRAINING_CTX ? p0 : p0 * GGML_TRAINING_CTX / n_ctx);

    // compute
    rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);

    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i1;
}

inline void ggml_cuda_op_diag_mask_inf(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t i01_diff = i01_high - i01_low;

    const int n_past = ((int32_t *) src1->data)[0];

    // compute
    diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);

    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_soft_max(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_scale(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const float scale = ((float *) src1->data)[0];

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
    CUDA_CHECK(cudaGetLastError());

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
                         ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];
    const int64_t nrows0 = ggml_nrows(src0);

    const bool use_src1 = src1 != nullptr;
    const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
    const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
    const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
    const int64_t ne13 = use_src1 ? src1->ne[3] : 1;

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    const int nb2  = dst->nb[2];
    const int nb3  = dst->nb[3];

    GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
    GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);

    // strides for iteration over dims 3 and 2
    const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
    const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
    const int64_t src0_stride = ne00 * ne01 * stride_mod;
    const int64_t src1_stride = ne10 * ne11 * stride_mod;
    const int64_t dst_stride = ne0 * ne1 * stride_mod;

    const size_t src0_ts = ggml_type_size(src0->type);
    const size_t src0_bs = ggml_blck_size(src0->type);

    struct ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
    struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
    struct ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *) dst->extra;

    const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
    const bool src0_is_contiguous = ggml_is_contiguous(src0);
    const bool src0_is_f32 = src0->type == GGML_TYPE_F32;

    const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
    const bool src1_stays_on_host = use_src1 && (
        dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);

    const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;

    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);

    // dd = data device
    char  * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
    float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
    float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
    float *  dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};

    // asq = actual size quantized, asf = actual size float
    size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
    size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
    size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
    size_t  dst_asf[GGML_CUDA_MAX_DEVICES] = {0};

    // if multiple devices are used they need to wait for the main device
    // here an event is recorded that signifies that the main device has finished calculating the input data
    if (split && g_device_count > 1) {
        CUDA_CHECK(cudaSetDevice(g_main_device));
        CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
    }

    for (int id = 0; id < g_device_count; ++id) {
        if (!split && id != g_main_device) {
            continue;
        }

        const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
        const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;

        int64_t row_low, row_high;
        if (split) {
            row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
            row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
        } else {
            row_low = 0;
            row_high = nrows0;
        }
        if (row_low == row_high) {
            continue;
        }

        int64_t row_diff = row_high - row_low;

        cudaSetDevice(id);
        cudaStream_t cudaStream_main = g_cudaStreams_main[id];

        // wait for main GPU data if necessary
        if (split && id != g_main_device) {
            CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
        }

        if (src0_on_device && src0_is_contiguous) {
            if (src0_is_f32) {
                src0_ddf[id] = (float *) src0_extra->data_device[id];
            } else {
                src0_ddq[id] = (char *) src0_extra->data_device[id];
            }
        } else {
            if (src0_is_f32) {
                src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
            } else {
                src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
            }
        }

        if (src0_needs_f32 && !src0_is_f32) {
            src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
        }

        if (use_src1 && !src1_stays_on_host) {
            if (src1_on_device && src1_is_contiguous) {
                src1_ddf[id] = (float *) src1_extra->data_device[id];
            } else {
                src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
            }
        }
        if (dst_on_device) {
            dst_ddf[id] = (float *) dst_extra->data_device[id];
        } else {
            size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
            dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
        }

        const int64_t i03_max = flatten_rows ? 1 : ne03;
        const int64_t i02_max = flatten_rows ? 1 : ne02;
        const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;

        for (int64_t i03 = 0; i03 < i03_max; i03++) {
            const int64_t i13 = i03 % ne13;
            for (int64_t i02 = 0; i02 < i02_max; i02++) {
                const int64_t i12 = i02 % ne12;

                const int64_t i0 = i03*ne02 + i02;

                // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
                const int64_t i0_offset_low = row_low/rows_per_iter;
                const int64_t i0_offset_high = row_high/rows_per_iter;

                int64_t i01_low = 0;
                int64_t i01_high = rows_per_iter;
                if (split) {
                    if (i0 < i0_offset_low || i0 > i0_offset_high) {
                        continue;
                    }
                    if (i0 == i0_offset_low) {
                        i01_low = row_low % rows_per_iter;
                    }
                    if (i0 == i0_offset_high) {
                        i01_high = row_high % rows_per_iter;
                    }
                }

                // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
                // Removing the first assert or changing the order of the arguments causes the second assert to fail.
                // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
                // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
                GGML_ASSERT(i01_low == 0 || g_device_count > 1);
                GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);

                const int64_t i01_diff = i01_high - i01_low;
                if (i01_diff == 0) {
                    continue;
                }
                const int64_t i11 = i13*ne12 + i12;

                // for split tensors the data begins at i0 == i0_offset_low
                char  * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
                float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
                float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
                float * dst_ddf_i  =  dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;

                // for split tensors the data pointer needs to be rounded down
                // to the bin edge for i03, i02 bins beyond the first
                if (i0 - i0_offset_low > 0) {
                    GGML_ASSERT(!flatten_rows);
                    src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
                    src0_ddf_i -= (row_low % ne01)*ne00;
                    dst_ddf_i  -= (row_low % ne0)*ne1;
                }

                // the main device memory buffer can be on VRAM scratch, with space for all partial results
                // in that case an offset on dst_ddf_i is needed
                if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
                    dst_ddf_i += i01_low; // offset is 0 if no tensor split
                }

                // copy src0, src1 to device if necessary
                if (use_src1 && !src1_stays_on_host) {
                    if (src1->backend == GGML_BACKEND_CPU) {
                        GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
                        int64_t nrows1 = flatten_rows ? nrows0 : ne11;
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
                    } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
                        if (id != g_main_device) {
                            GGML_ASSERT(!flatten_rows);
                            float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
                            src1_ddf_i_source += i11*src1_stride;
                            CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
                                                    cudaMemcpyDeviceToDevice, cudaStream_main));
                        }
                    } else if (src1_on_device && !src1_is_contiguous) {
                        GGML_ASSERT(!split);
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
                    } else {
                        GGML_ASSERT(false);
                    }
                }

                if (!src0_on_device || !src0_is_contiguous) {
                    if (src0_is_f32) {
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
                    } else {
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
                    }
                }

                // convert src0 to f32 if it is necessary for the ggml_cuda_op
                if (src0_needs_f32 && !src0_is_f32) {
                    to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
                    CUDA_CHECK(cudaGetLastError());
                }

                // do the computation
                op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
                CUDA_CHECK(cudaGetLastError());

                // copy dst to host or other device if necessary
                if (!dst_on_device) {
                    void * dst_off_device;
                    cudaMemcpyKind kind;
                    if (dst->backend == GGML_BACKEND_CPU) {
                        dst_off_device = dst->data;
                        kind = cudaMemcpyDeviceToHost;
                    } else if (dst->backend == GGML_BACKEND_GPU) {
                        dst_off_device = dst_extra->data_device[g_main_device];
                        kind = cudaMemcpyDeviceToDevice;
                    } else {
                        GGML_ASSERT(false);
                    }
                    if (split) {
                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
                        // dst is NOT transposed.
                        // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
                        for (int64_t j = 0; j < ne1; ++j) {
                            float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3);
                            CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main));
                        }
                    } else {
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
                    }
                }

                // signify to main device that other device is done
                if (split && g_device_count > 1 && id != g_main_device) {
                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
                }
            }
        }
    }

    // wait until each device is finished, then free their buffers
    for (int id = 0; id < g_device_count; ++id) {
        if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
            continue;
        }

        CUDA_CHECK(cudaSetDevice(id));

        if (src0_asq[id] > 0) {
            ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
        }
        if (src0_asf[id] > 0) {
            ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
        }
        if (src1_asf[id] > 0) {
            ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
        }
        if (dst_asf[id] > 0) {
            ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
        }
    }

    // main device waits for all other devices to be finished
    if (split && g_device_count > 1) {
        CUDA_CHECK(cudaSetDevice(g_main_device));
        for (int id = 0; id < g_device_count; ++id) {
            if (id != g_main_device) {
                CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
            }
        }
    }

    if (dst->backend == GGML_BACKEND_CPU) {
        CUDA_CHECK(cudaSetDevice(g_main_device));
        CUDA_CHECK(cudaDeviceSynchronize());
    }
}

void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
    // Due to flatten_rows == true this does in practice not make a difference however.
    // Better solution would be nice but right now that would require disproportionate changes.
    GGML_ASSERT(
        (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
        src1->type == GGML_TYPE_F32 &&
        (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
}

void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
}

void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
}

void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
}

bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    // TODO: find the optimal values for these
    if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
        src1->type == GGML_TYPE_F32 &&
        dst->type == GGML_TYPE_F32 &&
        (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
        return true;
    }

    return false;
}

void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

    CUDA_CHECK(cudaSetDevice(g_main_device));
    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];

    struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
    void * src0_ddq = src0_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];

    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
}

void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
    GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
    GGML_ASSERT(!ggml_is_permuted(src0));
    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

    const int64_t nb01 = src0->nb[1];
    const int64_t nb02 = src0->nb[2];

    CUDA_CHECK(cudaSetDevice(g_main_device));
    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];

    struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
    void * src0_ddq = src0_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];

    const int row_stride_x = nb01 / sizeof(half);
    const int channel_stride_x = nb02 / sizeof(half);

    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
}

void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
        src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;

    if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
        ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
    } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
        ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
    }else if (src0->type == GGML_TYPE_F32) {
        ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
    } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
        if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
            ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
        } else {
            ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
        }
    } else {
        GGML_ASSERT(false);
    }
}

void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
}

void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    const int64_t ne = ggml_nelements(src0);
    GGML_ASSERT(ne == ggml_nelements(src1));

    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
    GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);

    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    GGML_ASSERT(src0->ne[3] == 1);

    const int64_t nb00 = src0->nb[0];
    const int64_t nb01 = src0->nb[1];
    const int64_t nb02 = src0->nb[2];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    GGML_ASSERT(src1->ne[3] == 1);

    const int64_t nb10 = src1->nb[0];
    const int64_t nb11 = src1->nb[1];
    const int64_t nb12 = src1->nb[2];

    CUDA_CHECK(cudaSetDevice(g_main_device));
    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];

    const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
    const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;

    char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
    char * src1_ddc = (char *) src1_extra->data_device[g_main_device];

    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
        ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
                              ne10, ne11, nb10, nb11, nb12, cudaStream_main);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
        ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
                              ne10, ne11, nb10, nb11, nb12, cudaStream_main);
    } else {
        GGML_ASSERT(false);
    }

    (void) dst;
}

void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
}

void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
}

void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
}

void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    (void) src0;
    (void) src1;
    (void) dst;
}

void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
    int nrows = ggml_nrows(tensor);

    const int64_t ne0 = tensor->ne[0];

    const size_t nb1 = tensor->nb[1];

    ggml_backend backend = tensor->backend;
    struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
    memset(extra, 0, sizeof(*extra));

    for (int id = 0; id < g_device_count; ++id) {
        if (backend == GGML_BACKEND_GPU && id != g_main_device) {
            continue;
        }

        cudaSetDevice(id);

        int row_low, row_high;
        if (backend == GGML_BACKEND_GPU) {
            row_low = 0;
            row_high = nrows;
        } else if (backend == GGML_BACKEND_GPU_SPLIT) {
            row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
            row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1];
        } else {
            GGML_ASSERT(false);
        }
        if (row_low == row_high) {
            continue;
        }

        int64_t nrows_split = row_high - row_low;

        const size_t offset_split = row_low*nb1;
        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
                * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
        }

        char * buf;
        CUDA_CHECK(cudaMalloc(&buf, size));
        char * buf_host = (char*)data + offset_split;

        // set padding to 0 to avoid possible NaN values
        if (size > original_size) {
            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
        }


        cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);

        extra->data_device[id] = buf;

        if (backend == GGML_BACKEND_GPU_SPLIT) {
            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
        }
    }

    tensor->extra = extra;
}

void ggml_cuda_free_data(struct ggml_tensor * tensor) {
    if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
        return;
    }

    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;

    for (int id = 0; id < g_device_count; ++id) {
        if (extra->data_device[id] != nullptr) {
            CUDA_CHECK(cudaSetDevice(id));
            CUDA_CHECK(cudaFree(extra->data_device[id]));
        }

        if (extra->events[id] != nullptr) {
            CUDA_CHECK(cudaSetDevice(id));
            CUDA_CHECK(cudaEventDestroy(extra->events[id]));
        }
    }

    delete extra;
}

void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
    if (scratch && g_scratch_size == 0) {
        return;
    }

    // recursively assign CUDA buffers until a compute tensor is found
    if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
        const ggml_op src0_op = tensor->src[0]->op;
        if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) {
            ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
        }
    }
    if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
        ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
    }

    tensor->backend = GGML_BACKEND_GPU;
    struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
    memset(extra, 0, sizeof(*extra));

    const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
        tensor->op == GGML_OP_VIEW ||
        force_inplace;
    const size_t size = ggml_nbytes(tensor);

    CUDA_CHECK(cudaSetDevice(g_main_device));
    if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
        struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
        char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
        size_t offset = 0;
        if (tensor->op == GGML_OP_VIEW) {
            memcpy(&offset, tensor->src[2]->data, sizeof(size_t));
        }
        extra->data_device[g_main_device] = src0_ddc + offset;
    } else if (tensor->op == GGML_OP_CPY) {
        struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
        void * src1_ddv = src1_extra->data_device[g_main_device];
        extra->data_device[g_main_device] = src1_ddv;
    } else if (scratch) {
        GGML_ASSERT(size <= g_scratch_size);
        if (g_scratch_offset + size > g_scratch_size) {
            g_scratch_offset = 0;
        }

        char * data = (char *) g_scratch_buffer;
        if (data == nullptr) {
            CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
            g_scratch_buffer = data;
        }
        extra->data_device[g_main_device] = data + g_scratch_offset;

        g_scratch_offset += size;

        GGML_ASSERT(g_scratch_offset <= g_scratch_size);
    } else { // allocate new buffers outside of scratch
        void * data;
        CUDA_CHECK(cudaMalloc(&data, size));
        CUDA_CHECK(cudaMemset(data, 0, size));
        extra->data_device[g_main_device] = data;
    }

    tensor->extra = extra;
}

void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
    ggml_cuda_assign_buffers_impl(tensor, true, false);
}

void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
    ggml_cuda_assign_buffers_impl(tensor, false, false);
}

void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
    ggml_cuda_assign_buffers_impl(tensor, false, true);
}

void ggml_cuda_set_main_device(int main_device) {
    if (main_device >= g_device_count) {
        fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
                main_device, g_device_count, g_main_device);
        return;
    }
    g_main_device = main_device;
    if (g_device_count > 1) {
        cudaDeviceProp prop;
        CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
        fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
    }
}

void ggml_cuda_set_scratch_size(size_t scratch_size) {
    g_scratch_size = scratch_size;
}

void ggml_cuda_free_scratch() {
    if (g_scratch_buffer == nullptr) {
        return;
    }

    CUDA_CHECK(cudaFree(g_scratch_buffer));
    g_scratch_buffer = nullptr;
}

bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
    ggml_cuda_func_t func;
    const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
        || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
        || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);

    switch (tensor->op) {
        case GGML_OP_ADD:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_add;
            break;
        case GGML_OP_MUL:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_mul;
            break;
        case GGML_OP_SILU:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_silu;
            break;
        case GGML_OP_RMS_NORM:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_rms_norm;
            break;
        case GGML_OP_MUL_MAT:
            if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
                return false;
            }
            func = ggml_cuda_mul_mat;
            break;
        case GGML_OP_SCALE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_scale;
            break;
        case GGML_OP_CPY:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_cpy;
            break;
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_nop;
            break;
        case GGML_OP_DIAG_MASK_INF:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_diag_mask_inf;
            break;
        case GGML_OP_SOFT_MAX:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_soft_max;
            break;
        case GGML_OP_ROPE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_rope;
            break;
        default:
            return false;
    }

    if (params->ith != 0) {
        return true;
    }
    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
        return true;
    }
    func(tensor->src[0], tensor->src[1], tensor);
    return true;
}