Spaces:
Runtime error
Runtime error
/******************************************************************************* | |
* Copyright (c) 2019-2020 The Khronos Group Inc. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
******************************************************************************/ | |
/** | |
* This is a header-only utility library that provides OpenCL host code with | |
* routines for converting to/from cl_half values. | |
* | |
* Example usage: | |
* | |
* #include <CL/cl_half.h> | |
* ... | |
* cl_half h = cl_half_from_float(0.5f, CL_HALF_RTE); | |
* cl_float f = cl_half_to_float(h); | |
*/ | |
extern "C" { | |
/** | |
* Rounding mode used when converting to cl_half. | |
*/ | |
typedef enum | |
{ | |
CL_HALF_RTE, // round to nearest even | |
CL_HALF_RTZ, // round towards zero | |
CL_HALF_RTP, // round towards positive infinity | |
CL_HALF_RTN, // round towards negative infinity | |
} cl_half_rounding_mode; | |
/* Private utility macros. */ | |
/* | |
* Utility to deal with values that overflow when converting to half precision. | |
*/ | |
static inline cl_half cl_half_handle_overflow(cl_half_rounding_mode rounding_mode, | |
uint16_t sign) | |
{ | |
if (rounding_mode == CL_HALF_RTZ) | |
{ | |
// Round overflow towards zero -> largest finite number (preserving sign) | |
return (sign << 15) | CL_HALF_MAX_FINITE_MAG; | |
} | |
else if (rounding_mode == CL_HALF_RTP && sign) | |
{ | |
// Round negative overflow towards positive infinity -> most negative finite number | |
return (1 << 15) | CL_HALF_MAX_FINITE_MAG; | |
} | |
else if (rounding_mode == CL_HALF_RTN && !sign) | |
{ | |
// Round positive overflow towards negative infinity -> largest finite number | |
return CL_HALF_MAX_FINITE_MAG; | |
} | |
// Overflow to infinity | |
return (sign << 15) | CL_HALF_EXP_MASK; | |
} | |
/* | |
* Utility to deal with values that underflow when converting to half precision. | |
*/ | |
static inline cl_half cl_half_handle_underflow(cl_half_rounding_mode rounding_mode, | |
uint16_t sign) | |
{ | |
if (rounding_mode == CL_HALF_RTP && !sign) | |
{ | |
// Round underflow towards positive infinity -> smallest positive value | |
return (sign << 15) | 1; | |
} | |
else if (rounding_mode == CL_HALF_RTN && sign) | |
{ | |
// Round underflow towards negative infinity -> largest negative value | |
return (sign << 15) | 1; | |
} | |
// Flush to zero | |
return (sign << 15); | |
} | |
/** | |
* Convert a cl_float to a cl_half. | |
*/ | |
static inline cl_half cl_half_from_float(cl_float f, cl_half_rounding_mode rounding_mode) | |
{ | |
// Type-punning to get direct access to underlying bits | |
union | |
{ | |
cl_float f; | |
uint32_t i; | |
} f32; | |
f32.f = f; | |
// Extract sign bit | |
uint16_t sign = f32.i >> 31; | |
// Extract FP32 exponent and mantissa | |
uint32_t f_exp = (f32.i >> (CL_FLT_MANT_DIG - 1)) & 0xFF; | |
uint32_t f_mant = f32.i & ((1 << (CL_FLT_MANT_DIG - 1)) - 1); | |
// Remove FP32 exponent bias | |
int32_t exp = f_exp - CL_FLT_MAX_EXP + 1; | |
// Add FP16 exponent bias | |
uint16_t h_exp = (uint16_t)(exp + CL_HALF_MAX_EXP - 1); | |
// Position of the bit that will become the FP16 mantissa LSB | |
uint32_t lsb_pos = CL_FLT_MANT_DIG - CL_HALF_MANT_DIG; | |
// Check for NaN / infinity | |
if (f_exp == 0xFF) | |
{ | |
if (f_mant) | |
{ | |
// NaN -> propagate mantissa and silence it | |
uint16_t h_mant = (uint16_t)(f_mant >> lsb_pos); | |
h_mant |= 0x200; | |
return (sign << 15) | CL_HALF_EXP_MASK | h_mant; | |
} | |
else | |
{ | |
// Infinity -> zero mantissa | |
return (sign << 15) | CL_HALF_EXP_MASK; | |
} | |
} | |
// Check for zero | |
if (!f_exp && !f_mant) | |
{ | |
return (sign << 15); | |
} | |
// Check for overflow | |
if (exp >= CL_HALF_MAX_EXP) | |
{ | |
return cl_half_handle_overflow(rounding_mode, sign); | |
} | |
// Check for underflow | |
if (exp < (CL_HALF_MIN_EXP - CL_HALF_MANT_DIG - 1)) | |
{ | |
return cl_half_handle_underflow(rounding_mode, sign); | |
} | |
// Check for value that will become denormal | |
if (exp < -14) | |
{ | |
// Denormal -> include the implicit 1 from the FP32 mantissa | |
h_exp = 0; | |
f_mant |= 1 << (CL_FLT_MANT_DIG - 1); | |
// Mantissa shift amount depends on exponent | |
lsb_pos = -exp + (CL_FLT_MANT_DIG - 25); | |
} | |
// Generate FP16 mantissa by shifting FP32 mantissa | |
uint16_t h_mant = (uint16_t)(f_mant >> lsb_pos); | |
// Check whether we need to round | |
uint32_t halfway = 1 << (lsb_pos - 1); | |
uint32_t mask = (halfway << 1) - 1; | |
switch (rounding_mode) | |
{ | |
case CL_HALF_RTE: | |
if ((f_mant & mask) > halfway) | |
{ | |
// More than halfway -> round up | |
h_mant += 1; | |
} | |
else if ((f_mant & mask) == halfway) | |
{ | |
// Exactly halfway -> round to nearest even | |
if (h_mant & 0x1) | |
h_mant += 1; | |
} | |
break; | |
case CL_HALF_RTZ: | |
// Mantissa has already been truncated -> do nothing | |
break; | |
case CL_HALF_RTP: | |
if ((f_mant & mask) && !sign) | |
{ | |
// Round positive numbers up | |
h_mant += 1; | |
} | |
break; | |
case CL_HALF_RTN: | |
if ((f_mant & mask) && sign) | |
{ | |
// Round negative numbers down | |
h_mant += 1; | |
} | |
break; | |
} | |
// Check for mantissa overflow | |
if (h_mant & 0x400) | |
{ | |
h_exp += 1; | |
h_mant = 0; | |
} | |
return (sign << 15) | (h_exp << 10) | h_mant; | |
} | |
/** | |
* Convert a cl_double to a cl_half. | |
*/ | |
static inline cl_half cl_half_from_double(cl_double d, cl_half_rounding_mode rounding_mode) | |
{ | |
// Type-punning to get direct access to underlying bits | |
union | |
{ | |
cl_double d; | |
uint64_t i; | |
} f64; | |
f64.d = d; | |
// Extract sign bit | |
uint16_t sign = f64.i >> 63; | |
// Extract FP64 exponent and mantissa | |
uint64_t d_exp = (f64.i >> (CL_DBL_MANT_DIG - 1)) & 0x7FF; | |
uint64_t d_mant = f64.i & (((uint64_t)1 << (CL_DBL_MANT_DIG - 1)) - 1); | |
// Remove FP64 exponent bias | |
int64_t exp = d_exp - CL_DBL_MAX_EXP + 1; | |
// Add FP16 exponent bias | |
uint16_t h_exp = (uint16_t)(exp + CL_HALF_MAX_EXP - 1); | |
// Position of the bit that will become the FP16 mantissa LSB | |
uint32_t lsb_pos = CL_DBL_MANT_DIG - CL_HALF_MANT_DIG; | |
// Check for NaN / infinity | |
if (d_exp == 0x7FF) | |
{ | |
if (d_mant) | |
{ | |
// NaN -> propagate mantissa and silence it | |
uint16_t h_mant = (uint16_t)(d_mant >> lsb_pos); | |
h_mant |= 0x200; | |
return (sign << 15) | CL_HALF_EXP_MASK | h_mant; | |
} | |
else | |
{ | |
// Infinity -> zero mantissa | |
return (sign << 15) | CL_HALF_EXP_MASK; | |
} | |
} | |
// Check for zero | |
if (!d_exp && !d_mant) | |
{ | |
return (sign << 15); | |
} | |
// Check for overflow | |
if (exp >= CL_HALF_MAX_EXP) | |
{ | |
return cl_half_handle_overflow(rounding_mode, sign); | |
} | |
// Check for underflow | |
if (exp < (CL_HALF_MIN_EXP - CL_HALF_MANT_DIG - 1)) | |
{ | |
return cl_half_handle_underflow(rounding_mode, sign); | |
} | |
// Check for value that will become denormal | |
if (exp < -14) | |
{ | |
// Include the implicit 1 from the FP64 mantissa | |
h_exp = 0; | |
d_mant |= (uint64_t)1 << (CL_DBL_MANT_DIG - 1); | |
// Mantissa shift amount depends on exponent | |
lsb_pos = (uint32_t)(-exp + (CL_DBL_MANT_DIG - 25)); | |
} | |
// Generate FP16 mantissa by shifting FP64 mantissa | |
uint16_t h_mant = (uint16_t)(d_mant >> lsb_pos); | |
// Check whether we need to round | |
uint64_t halfway = (uint64_t)1 << (lsb_pos - 1); | |
uint64_t mask = (halfway << 1) - 1; | |
switch (rounding_mode) | |
{ | |
case CL_HALF_RTE: | |
if ((d_mant & mask) > halfway) | |
{ | |
// More than halfway -> round up | |
h_mant += 1; | |
} | |
else if ((d_mant & mask) == halfway) | |
{ | |
// Exactly halfway -> round to nearest even | |
if (h_mant & 0x1) | |
h_mant += 1; | |
} | |
break; | |
case CL_HALF_RTZ: | |
// Mantissa has already been truncated -> do nothing | |
break; | |
case CL_HALF_RTP: | |
if ((d_mant & mask) && !sign) | |
{ | |
// Round positive numbers up | |
h_mant += 1; | |
} | |
break; | |
case CL_HALF_RTN: | |
if ((d_mant & mask) && sign) | |
{ | |
// Round negative numbers down | |
h_mant += 1; | |
} | |
break; | |
} | |
// Check for mantissa overflow | |
if (h_mant & 0x400) | |
{ | |
h_exp += 1; | |
h_mant = 0; | |
} | |
return (sign << 15) | (h_exp << 10) | h_mant; | |
} | |
/** | |
* Convert a cl_half to a cl_float. | |
*/ | |
static inline cl_float cl_half_to_float(cl_half h) | |
{ | |
// Type-punning to get direct access to underlying bits | |
union | |
{ | |
cl_float f; | |
uint32_t i; | |
} f32; | |
// Extract sign bit | |
uint16_t sign = h >> 15; | |
// Extract FP16 exponent and mantissa | |
uint16_t h_exp = (h >> (CL_HALF_MANT_DIG - 1)) & 0x1F; | |
uint16_t h_mant = h & 0x3FF; | |
// Remove FP16 exponent bias | |
int32_t exp = h_exp - CL_HALF_MAX_EXP + 1; | |
// Add FP32 exponent bias | |
uint32_t f_exp = exp + CL_FLT_MAX_EXP - 1; | |
// Check for NaN / infinity | |
if (h_exp == 0x1F) | |
{ | |
if (h_mant) | |
{ | |
// NaN -> propagate mantissa and silence it | |
uint32_t f_mant = h_mant << (CL_FLT_MANT_DIG - CL_HALF_MANT_DIG); | |
f_mant |= 0x400000; | |
f32.i = (sign << 31) | 0x7F800000 | f_mant; | |
return f32.f; | |
} | |
else | |
{ | |
// Infinity -> zero mantissa | |
f32.i = (sign << 31) | 0x7F800000; | |
return f32.f; | |
} | |
} | |
// Check for zero / denormal | |
if (h_exp == 0) | |
{ | |
if (h_mant == 0) | |
{ | |
// Zero -> zero exponent | |
f_exp = 0; | |
} | |
else | |
{ | |
// Denormal -> normalize it | |
// - Shift mantissa to make most-significant 1 implicit | |
// - Adjust exponent accordingly | |
uint32_t shift = 0; | |
while ((h_mant & 0x400) == 0) | |
{ | |
h_mant <<= 1; | |
shift++; | |
} | |
h_mant &= 0x3FF; | |
f_exp -= shift - 1; | |
} | |
} | |
f32.i = (sign << 31) | (f_exp << 23) | (h_mant << 13); | |
return f32.f; | |
} | |
} | |