Spaces:
Runtime error
Runtime error
// Defines sigaction on msys: | |
static llama_context ** g_ctx; | |
extern "C" { | |
struct MyModel* create_mymodel(int argc, char ** argv) { | |
gpt_params params; | |
if (gpt_params_parse(argc, argv, params) == false) { | |
return nullptr; | |
} | |
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); | |
llama_backend_init(params.numa); | |
llama_model * model; | |
llama_context * ctx; | |
g_ctx = &ctx; | |
// load the model and apply lora adapter, if any | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
return nullptr; | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", | |
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); | |
} | |
struct MyModel * ret = new MyModel(); | |
ret->ctx = ctx; | |
ret->params = params; | |
ret->n_past = 0; | |
// printf("ctx: %d\n", ret->ctx); | |
return ret; | |
} | |
void free_mymodel(struct MyModel * mymodel) { | |
llama_context * ctx = mymodel->ctx; | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
delete mymodel; | |
} | |
bool eval_float(void * model, float * input, int N){ | |
MyModel * mymodel = (MyModel*)model; | |
llama_context * ctx = mymodel->ctx; | |
gpt_params params = mymodel->params; | |
int n_emb = llama_n_embd(ctx); | |
int n_past = mymodel->n_past; | |
int n_batch = N; // params.n_batch; | |
for (int i = 0; i < (int) N; i += n_batch) { | |
int n_eval = (int) N - i; | |
if (n_eval > n_batch) { | |
n_eval = n_batch; | |
} | |
if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return false; | |
} | |
n_past += n_eval; | |
} | |
mymodel->n_past = n_past; | |
return true; | |
} | |
bool eval_tokens(void * model, std::vector<llama_token> tokens) { | |
MyModel * mymodel = (MyModel* )model; | |
llama_context * ctx; | |
ctx = mymodel->ctx; | |
gpt_params params = mymodel->params; | |
int n_past = mymodel->n_past; | |
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) { | |
int n_eval = (int) tokens.size() - i; | |
if (n_eval > params.n_batch) { | |
n_eval = params.n_batch; | |
} | |
if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return false; | |
} | |
n_past += n_eval; | |
} | |
mymodel->n_past = n_past; | |
return true; | |
} | |
bool eval_id(struct MyModel* mymodel, int id) { | |
std::vector<llama_token> tokens; | |
tokens.push_back(id); | |
return eval_tokens(mymodel, tokens); | |
} | |
bool eval_string(struct MyModel * mymodel,const char* str){ | |
llama_context * ctx = mymodel->ctx; | |
std::string str2 = str; | |
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true); | |
eval_tokens(mymodel, embd_inp); | |
return true; | |
} | |
llama_token sampling_id(struct MyModel* mymodel) { | |
llama_context* ctx = mymodel->ctx; | |
gpt_params params = mymodel->params; | |
// int n_ctx = llama_n_ctx(ctx); | |
// out of user input, sample next token | |
const float temp = params.temp; | |
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; | |
const float top_p = params.top_p; | |
const float tfs_z = params.tfs_z; | |
const float typical_p = params.typical_p; | |
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; | |
// const float repeat_penalty = params.repeat_penalty; | |
// const float alpha_presence = params.presence_penalty; | |
// const float alpha_frequency = params.frequency_penalty; | |
const int mirostat = params.mirostat; | |
const float mirostat_tau = params.mirostat_tau; | |
const float mirostat_eta = params.mirostat_eta; | |
// const bool penalize_nl = params.penalize_nl; | |
llama_token id = 0; | |
{ | |
auto logits = llama_get_logits(ctx); | |
auto n_vocab = llama_n_vocab(ctx); | |
// Apply params.logit_bias map | |
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { | |
logits[it->first] += it->second; | |
} | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
// TODO: Apply penalties | |
// float nl_logit = logits[llama_token_nl()]; | |
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); | |
// llama_sample_repetition_penalty(ctx, &candidates_p, | |
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
// last_n_repeat, repeat_penalty); | |
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, | |
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
// last_n_repeat, alpha_frequency, alpha_presence); | |
// if (!penalize_nl) { | |
// logits[llama_token_nl()] = nl_logit; | |
// } | |
if (temp <= 0) { | |
// Greedy sampling | |
id = llama_sample_token_greedy(ctx, &candidates_p); | |
} else { | |
if (mirostat == 1) { | |
static float mirostat_mu = 2.0f * mirostat_tau; | |
const int mirostat_m = 100; | |
llama_sample_temperature(ctx, &candidates_p, temp); | |
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); | |
} else if (mirostat == 2) { | |
static float mirostat_mu = 2.0f * mirostat_tau; | |
llama_sample_temperature(ctx, &candidates_p, temp); | |
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); | |
} else { | |
// Temperature sampling | |
llama_sample_top_k(ctx, &candidates_p, top_k, 1); | |
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); | |
llama_sample_typical(ctx, &candidates_p, typical_p, 1); | |
llama_sample_top_p(ctx, &candidates_p, top_p, 1); | |
llama_sample_temperature(ctx, &candidates_p, temp); | |
id = llama_sample_token(ctx, &candidates_p); | |
} | |
} | |
} | |
return id; | |
} | |
const char * sampling(struct MyModel * mymodel) { | |
llama_context * ctx = mymodel->ctx; | |
int id = sampling_id(mymodel); | |
static std::string ret; | |
if (id == llama_token_eos()) { | |
ret = "</s>"; | |
} else { | |
ret = llama_token_to_str(ctx, id); | |
} | |
eval_id(mymodel, id); | |
return ret.c_str(); | |
} | |
} | |