Spaces:
Runtime error
Runtime error
import sys | |
import os | |
sys.path.insert(0, os.path.dirname(__file__)) | |
from embd_input import MyModel | |
import numpy as np | |
from torch import nn | |
import torch | |
from transformers import CLIPVisionModel, CLIPImageProcessor | |
from PIL import Image | |
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1' | |
vision_tower = "openai/clip-vit-large-patch14" | |
select_hidden_state_layer = -2 | |
# (vision_config.image_size // vision_config.patch_size) ** 2 | |
image_token_len = (224//14)**2 | |
class Llava: | |
def __init__(self, args): | |
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower) | |
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower) | |
self.mm_projector = nn.Linear(1024, 5120) | |
self.model = MyModel(["main", *args]) | |
def load_projection(self, path): | |
state = torch.load(path) | |
self.mm_projector.load_state_dict({ | |
"weight": state["model.mm_projector.weight"], | |
"bias": state["model.mm_projector.bias"]}) | |
def chat(self, question): | |
self.model.eval_string("user: ") | |
self.model.eval_string(question) | |
self.model.eval_string("\nassistant: ") | |
return self.model.generate_with_print() | |
def chat_with_image(self, image, question): | |
with torch.no_grad(): | |
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True) | |
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer] | |
image_feature = select_hidden_state[:, 1:] | |
embd_image = self.mm_projector(image_feature) | |
embd_image = embd_image.cpu().numpy()[0] | |
self.model.eval_string("user: ") | |
self.model.eval_token(32003-2) # im_start | |
self.model.eval_float(embd_image.T) | |
for i in range(image_token_len-embd_image.shape[0]): | |
self.model.eval_token(32003-3) # im_patch | |
self.model.eval_token(32003-1) # im_end | |
self.model.eval_string(question) | |
self.model.eval_string("\nassistant: ") | |
return self.model.generate_with_print() | |
if __name__=="__main__": | |
# model form liuhaotian/LLaVA-13b-delta-v1-1 | |
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"]) | |
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin. | |
# Also here can use pytorch_model-00003-of-00003.bin directly. | |
a.load_projection(os.path.join( | |
os.path.dirname(__file__) , | |
"llava_projetion.pth")) | |
respose = a.chat_with_image( | |
Image.open("./media/llama1-logo.png").convert('RGB'), | |
"what is the text in the picture?") | |
respose | |
a.chat("what is the color of it?") | |