from typing import Optional, Tuple, Union import torch from diffusers import FlowMatchEulerDiscreteScheduler from tqdm import tqdm import numpy as np from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps def scale_noise( scheduler, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], noise: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Foward process in flow-matching Args: sample (`torch.FloatTensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ # if scheduler.step_index is None: scheduler._init_step_index(timestep) sigma = scheduler.sigmas[scheduler.step_index] sample = sigma * noise + (1.0 - sigma) * sample return sample # for flux def calculate_shift( image_seq_len, base_seq_len: int = 256, max_seq_len: int = 4096, base_shift: float = 0.5, max_shift: float = 1.16, ): m = (max_shift - base_shift) / (max_seq_len - base_seq_len) b = base_shift - m * base_seq_len mu = image_seq_len * m + b return mu def calc_v_sd3(pipe, src_tar_latent_model_input, src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t): # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(src_tar_latent_model_input.shape[0]) # joint_attention_kwargs = {} # # add timestep to joint_attention_kwargs # joint_attention_kwargs["timestep"] = timestep[0] # joint_attention_kwargs["timestep_idx"] = i with torch.no_grad(): # # predict the noise for the source prompt noise_pred_src_tar = pipe.transformer( hidden_states=src_tar_latent_model_input, timestep=timestep, encoder_hidden_states=src_tar_prompt_embeds, pooled_projections=src_tar_pooled_prompt_embeds, joint_attention_kwargs=None, return_dict=False, )[0] # perform guidance source if pipe.do_classifier_free_guidance: src_noise_pred_uncond, src_noise_pred_text, tar_noise_pred_uncond, tar_noise_pred_text = noise_pred_src_tar.chunk(4) noise_pred_src = src_noise_pred_uncond + src_guidance_scale * (src_noise_pred_text - src_noise_pred_uncond) noise_pred_tar = tar_noise_pred_uncond + tar_guidance_scale * (tar_noise_pred_text - tar_noise_pred_uncond) return noise_pred_src, noise_pred_tar def calc_v_flux(pipe, latents, prompt_embeds, pooled_prompt_embeds, guidance, text_ids, latent_image_ids, t): # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]) # joint_attention_kwargs = {} # # add timestep to joint_attention_kwargs # joint_attention_kwargs["timestep"] = timestep[0] # joint_attention_kwargs["timestep_idx"] = i with torch.no_grad(): # # predict the noise for the source prompt noise_pred = pipe.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, pooled_projections=pooled_prompt_embeds, joint_attention_kwargs=None, return_dict=False, )[0] return noise_pred @torch.no_grad() def FlowEditSD3(pipe, scheduler, x_src, src_prompt, tar_prompt, negative_prompt, T_steps: int = 50, n_avg: int = 1, src_guidance_scale: float = 3.5, tar_guidance_scale: float = 13.5, n_min: int = 0, n_max: int = 15,): device = x_src.device timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None) num_warmup_steps = max(len(timesteps) - T_steps * scheduler.order, 0) pipe._num_timesteps = len(timesteps) pipe._guidance_scale = src_guidance_scale # src prompts ( src_prompt_embeds, src_negative_prompt_embeds, src_pooled_prompt_embeds, src_negative_pooled_prompt_embeds, ) = pipe.encode_prompt( prompt=src_prompt, prompt_2=None, prompt_3=None, negative_prompt=negative_prompt, do_classifier_free_guidance=pipe.do_classifier_free_guidance, device=device, ) # tar prompts pipe._guidance_scale = tar_guidance_scale ( tar_prompt_embeds, tar_negative_prompt_embeds, tar_pooled_prompt_embeds, tar_negative_pooled_prompt_embeds, ) = pipe.encode_prompt( prompt=tar_prompt, prompt_2=None, prompt_3=None, negative_prompt=negative_prompt, do_classifier_free_guidance=pipe.do_classifier_free_guidance, device=device, ) # CFG prep src_tar_prompt_embeds = torch.cat([src_negative_prompt_embeds, src_prompt_embeds, tar_negative_prompt_embeds, tar_prompt_embeds], dim=0) src_tar_pooled_prompt_embeds = torch.cat([src_negative_pooled_prompt_embeds, src_pooled_prompt_embeds, tar_negative_pooled_prompt_embeds, tar_pooled_prompt_embeds], dim=0) # initialize our ODE Zt_edit_1=x_src zt_edit = x_src.clone() for i, t in tqdm(enumerate(timesteps)): if T_steps - i > n_max: continue t_i = t/1000 if i+1 < len(timesteps): t_im1 = (timesteps[i+1])/1000 else: t_im1 = torch.zeros_like(t_i).to(t_i.device) if T_steps - i > n_min: # Calculate the average of the V predictions V_delta_avg = torch.zeros_like(x_src) for k in range(n_avg): fwd_noise = torch.randn_like(x_src).to(x_src.device) zt_src = (1-t_i)*x_src + (t_i)*fwd_noise zt_tar = zt_edit + zt_src - x_src src_tar_latent_model_input = torch.cat([zt_src, zt_src, zt_tar, zt_tar]) if pipe.do_classifier_free_guidance else (zt_src, zt_tar) Vt_src, Vt_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t) V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src)) # propagate direct ODE zt_edit = zt_edit.to(torch.float32) zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg zt_edit = zt_edit.to(V_delta_avg.dtype) else: # i >= T_steps-n_min # regular sampling for last n_min steps if i == T_steps-n_min: # initialize SDEDIT-style generation phase fwd_noise = torch.randn_like(x_src).to(x_src.device) xt_src = scale_noise(scheduler, x_src, t, noise=fwd_noise) xt_tar = zt_edit + xt_src - x_src src_tar_latent_model_input = torch.cat([xt_tar, xt_tar, xt_tar, xt_tar]) if pipe.do_classifier_free_guidance else (xt_src, xt_tar) _, noise_pred_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t) xt_tar = xt_tar.to(torch.float32) prev_sample = xt_tar + (t_im1 - t_im1) * (noise_pred_tar) prev_sample = prev_sample.to(noise_pred_tar.dtype) xt_tar = prev_sample return zt_edit if n_min == 0 else xt_tar @torch.no_grad() def FlowEditFLUX(pipe, scheduler, x_src, src_prompt, tar_prompt, negative_prompt, T_steps: int = 28, n_avg: int = 1, src_guidance_scale: float = 1.5, tar_guidance_scale: float = 5.5, n_min: int = 0, n_max: int = 24,): device = x_src.device orig_height, orig_width = x_src.shape[2]*pipe.vae_scale_factor//2, x_src.shape[3]*pipe.vae_scale_factor//2 num_channels_latents = pipe.transformer.config.in_channels // 4 pipe.check_inputs( prompt=src_prompt, prompt_2=None, height=orig_height, width=orig_width, callback_on_step_end_tensor_inputs=None, max_sequence_length=512, ) x_src, latent_src_image_ids = pipe.prepare_latents(batch_size= x_src.shape[0], num_channels_latents=num_channels_latents, height=orig_height, width=orig_width, dtype=x_src.dtype, device=x_src.device, generator=None,latents=x_src) x_src_packed = pipe._pack_latents(x_src, x_src.shape[0], num_channels_latents, x_src.shape[2], x_src.shape[3]) latent_tar_image_ids = latent_src_image_ids # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / T_steps, T_steps) image_seq_len = x_src_packed.shape[1] mu = calculate_shift( image_seq_len, scheduler.config.base_image_seq_len, scheduler.config.max_image_seq_len, scheduler.config.base_shift, scheduler.config.max_shift, ) timesteps, T_steps = retrieve_timesteps( scheduler, T_steps, device, timesteps=None, sigmas=sigmas, mu=mu, ) num_warmup_steps = max(len(timesteps) - T_steps * pipe.scheduler.order, 0) pipe._num_timesteps = len(timesteps) # src prompts ( src_prompt_embeds, src_pooled_prompt_embeds, src_text_ids, ) = pipe.encode_prompt( prompt=src_prompt, prompt_2=None, device=device, ) # tar prompts pipe._guidance_scale = tar_guidance_scale ( tar_prompt_embeds, tar_pooled_prompt_embeds, tar_text_ids, ) = pipe.encode_prompt( prompt=tar_prompt, prompt_2=None, device=device, ) # handle guidance if pipe.transformer.config.guidance_embeds: src_guidance = torch.tensor([src_guidance_scale], device=device) src_guidance = src_guidance.expand(x_src_packed.shape[0]) tar_guidance = torch.tensor([tar_guidance_scale], device=device) tar_guidance = tar_guidance.expand(x_src_packed.shape[0]) else: src_guidance = None tar_guidance = None # initialize our ODE Zt_edit_1=x_src zt_edit = x_src_packed.clone() for i, t in tqdm(enumerate(timesteps)): if T_steps - i > n_max: continue scheduler._init_step_index(t) t_i = scheduler.sigmas[scheduler.step_index] if i < len(timesteps): t_im1 = scheduler.sigmas[scheduler.step_index + 1] else: t_im1 = t_i if T_steps - i > n_min: # Calculate the average of the V predictions V_delta_avg = torch.zeros_like(x_src_packed) for k in range(n_avg): fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device) zt_src = (1-t_i)*x_src_packed + (t_i)*fwd_noise zt_tar = zt_edit + zt_src - x_src_packed # Merge in the future to avoid double computation Vt_src = calc_v_flux(pipe, latents=zt_src, prompt_embeds=src_prompt_embeds, pooled_prompt_embeds=src_pooled_prompt_embeds, guidance=src_guidance, text_ids=src_text_ids, latent_image_ids=latent_src_image_ids, t=t) Vt_tar = calc_v_flux(pipe, latents=zt_tar, prompt_embeds=tar_prompt_embeds, pooled_prompt_embeds=tar_pooled_prompt_embeds, guidance=tar_guidance, text_ids=tar_text_ids, latent_image_ids=latent_tar_image_ids, t=t) V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src)) # propagate direct ODE zt_edit = zt_edit.to(torch.float32) zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg zt_edit = zt_edit.to(V_delta_avg.dtype) else: # i >= T_steps-n_min # regular sampling last n_min steps if i == T_steps-n_min: # initialize SDEDIT-style generation phase fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device) xt_src = scale_noise(scheduler, x_src_packed, t, noise=fwd_noise) xt_tar = zt_edit + xt_src - x_src_packed Vt_tar = calc_v_flux(pipe, latents=xt_tar, prompt_embeds=tar_prompt_embeds, pooled_prompt_embeds=tar_pooled_prompt_embeds, guidance=tar_guidance, text_ids=tar_text_ids, latent_image_ids=latent_tar_image_ids, t=t) xt_tar = xt_tar.to(torch.float32) prev_sample = xt_tar + (t_im1 - t_i) * (Vt_tar) prev_sample = prev_sample.to(Vt_tar.dtype) xt_tar = prev_sample out = zt_edit if n_min == 0 else xt_tar unpacked_out = pipe._unpack_latents(out, orig_height, orig_width, pipe.vae_scale_factor) return unpacked_out