fancyfeast commited on
Commit
2fb728d
β€’
1 Parent(s): 0ba5137

Initial commit

Browse files
Files changed (2) hide show
  1. app.py +199 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer
4
+ import torch
5
+ import torch.amp.autocast_mode
6
+ from PIL import Image
7
+ import torchvision.transforms.functional as TVF
8
+ from threading import Thread
9
+ from typing import Generator
10
+
11
+
12
+ MODEL_PATH = "fancyfeast/llama-joycaption-alpha-two-vqa-test-1"
13
+ TITLE = "<h1><center>JoyCaption Alpha Two - VQA Test - (2024-11-25a)</center></h1>"
14
+ DESCRIPTION = """
15
+ <div>
16
+ <p>🚨🚨🚨 BY USING THIS SPACE YOU AGREE THAT YOUR QUERIES (but not images) <i>MAY</i> BE LOGGED AND COLLECTED ANONYMOUSLY 🚨🚨🚨</p>
17
+ <p>πŸ§ͺπŸ§ͺπŸ§ͺ This an experiment to see how well JoyCaption Alpha Two can learn to answer questions about images and follow instructions.
18
+ I've only finetuned it on 600 examples, so it is highly experimental, very weak, broken, and volatile. But for only training 600 examples,
19
+ I thought it was performing surprisingly well and wanted to share. πŸ§ͺπŸ§ͺπŸ§ͺ</p>
20
+ <p>Unlike JoyCaption Alpha Two, you can ask this finetune questions about the image, like "What is he holding in his hand?", "Where might this be?",
21
+ and "What are they doing?". It can also follow instructions, like "Write me a poem about this image",
22
+ "Write a caption but don't use any ambigious language, and make sure you mention that the image is from Instagram.", and
23
+ "Output JSON with the following properties: 'skin_tone', 'hair_style', 'hair_length', 'clothing', 'background'." Remember that this was only finetuned on
24
+ 600 VQA/instruction examples, so it is _very_ limited right now. Expect it to frequently fallback to its base behavior of just writing image descriptions.
25
+ Expect accuracy to be lower. Expect glitches. Despite that, I've found that it will follow most queries I've tested it with, even outside its training,
26
+ with enough coaxing and re-rolling.</p>
27
+ <p>About the 🚨🚨🚨 above: this space will log all prompts sent to it. The only thing this space logs is the text query; no images, no user data, etc.
28
+ I cannot see what images you send, and frankly, I don't want to. But knowing what kinds of instructions and queries users want JoyCaption to handle will
29
+ help guide me in building JoyCaption's VQA dataset. I've found out the hard way that almost all public VQA datasets are garbage and don't do a good job of
30
+ training and exercising visual understanding. Certainly not good enough to handle the complicated instructions that will allow JoyCaption users to guide and
31
+ direct how JoyCaption writes descriptions and captions. So I'm building my own dataset, that will be made public. So, with peace and love, this space logs the text
32
+ queries. As always, the model itself is completely public and free to use outside of this space. And, of course, I have no control nor access to what HuggingFace,
33
+ which are graciously hosting this space, log.</p>
34
+ </div>
35
+ """
36
+
37
+ PLACEHOLDER = """
38
+ """
39
+
40
+
41
+
42
+ # Load model
43
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True)
44
+ assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}"
45
+
46
+ model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
47
+ assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}"
48
+
49
+
50
+ def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]:
51
+ # Trim off the prompt
52
+ while True:
53
+ try:
54
+ i = input_ids.index(eoh_id)
55
+ except ValueError:
56
+ break
57
+
58
+ input_ids = input_ids[i + 1:]
59
+
60
+ # Trim off the end
61
+ try:
62
+ i = input_ids.index(eot_id)
63
+ except ValueError:
64
+ return input_ids
65
+
66
+ return input_ids[:i]
67
+
68
+ end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>")
69
+ end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
70
+ assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int)
71
+
72
+
73
+ @spaces.GPU()
74
+ @torch.no_grad()
75
+ def chat_joycaption(message: dict, history, temperature: float, max_new_tokens: int) -> Generator[str, None, None]:
76
+ torch.cuda.empty_cache()
77
+
78
+ # Prompts are always stripped in training for now
79
+ prompt = message['text'].strip()
80
+
81
+ # Load image
82
+ if "files" not in message or len(message["files"]) != 1:
83
+ raise ValueError("This model requires exactly one image as input.")
84
+
85
+ image = Image.open(message["files"][0])
86
+
87
+ # Log the prompt
88
+ print(f"Prompt: {prompt}")
89
+
90
+ # Preprocess image
91
+ # NOTE: I found the default processor for so400M to have worse results than just using PIL directly
92
+ if image.size != (384, 384):
93
+ image = image.resize((384, 384), Image.LANCZOS)
94
+ image = image.convert("RGB")
95
+ pixel_values = TVF.pil_to_tensor(image)
96
+
97
+ convo = [
98
+ {
99
+ "role": "system",
100
+ "content": "You are a helpful image captioner.",
101
+ },
102
+ {
103
+ "role": "user",
104
+ "content": prompt,
105
+ },
106
+ ]
107
+
108
+ # Format the conversation
109
+ convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
110
+ assert isinstance(convo_string, str)
111
+
112
+ # Tokenize the conversation
113
+ convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False)
114
+
115
+ # Repeat the image tokens
116
+ input_tokens = []
117
+ for token in convo_tokens:
118
+ if token == model.config.image_token_index:
119
+ input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length)
120
+ else:
121
+ input_tokens.append(token)
122
+
123
+ input_ids = torch.tensor(input_tokens, dtype=torch.long)
124
+ attention_mask = torch.ones_like(input_ids)
125
+
126
+ # Move to GPU
127
+ input_ids = input_ids.unsqueeze(0).to("cuda")
128
+ attention_mask = attention_mask.unsqueeze(0).to("cuda")
129
+ pixel_values = pixel_values.unsqueeze(0).to("cuda")
130
+
131
+ # Normalize the image
132
+ pixel_values = pixel_values / 255.0
133
+ pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
134
+ pixel_values = pixel_values.to(torch.bfloat16)
135
+
136
+ generate_kwargs = dict(
137
+ input_ids=input_ids,
138
+ pixel_values=pixel_values,
139
+ attention_mask=attention_mask,
140
+ max_new_tokens=max_new_tokens,
141
+ do_sample=True,
142
+ suppress_tokens=None,
143
+ use_cache=True,
144
+ temperature=temperature,
145
+ top_k=None,
146
+ top_p=0.9,
147
+ streamer=streamer,
148
+ )
149
+
150
+ if temperature == 0:
151
+ generate_kwargs["do_sample"] = False
152
+
153
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
154
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
155
+ t.start()
156
+
157
+ outputs = []
158
+ for text in streamer:
159
+ outputs.append(text)
160
+ yield "".join(outputs)
161
+
162
+
163
+ chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
164
+
165
+ with gr.Blocks() as demo:
166
+ gr.HTML(TITLE)
167
+ gr.Markdown(DESCRIPTION)
168
+ gr.ChatInterface(
169
+ fn=chat_joycaption,
170
+ chatbot=chatbot,
171
+ fill_height=True,
172
+ additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
173
+ additional_inputs=[
174
+ gr.Slider(minimum=0,
175
+ maximum=1,
176
+ step=0.1,
177
+ value=0.6,
178
+ label="Temperature",
179
+ render=False),
180
+ gr.Slider(minimum=128,
181
+ maximum=4096,
182
+ step=1,
183
+ value=1024,
184
+ label="Max new tokens",
185
+ render=False ),
186
+ ],
187
+ examples=[
188
+ ['How to setup a human base on Mars? Give short answer.'],
189
+ ['Explain theory of relativity to me like I’m 8 years old.'],
190
+ ['What is 9,000 * 9,000?'],
191
+ ['Write a pun-filled happy birthday message to my friend Alex.'],
192
+ ['Justify why a penguin might make a good king of the jungle.']
193
+ ],
194
+ cache_examples=False,
195
+ )
196
+
197
+
198
+ if __name__ == "__main__":
199
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ huggingface_hub==0.23.4
2
+ accelerate
3
+ torch
4
+ transformers==4.45.2
5
+ sentencepiece
6
+ torchvision