Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# 加载 xLAM 模型和 tokenizer | |
model_name = "Salesforce/xLAM-7b-r" | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# 定义任务提示和格式提示 | |
task_instruction = """ | |
Based on the previous context and API request history, generate an API request or a response as an AI assistant. | |
""".strip() | |
format_instruction = """ | |
The output should be of the JSON format, which specifies a list of generated function calls. If no function call is needed, please make tool_calls an empty list "[]". | |
""".strip() | |
# 定义工具信息 | |
get_weather_api = { | |
"name": "get_weather", | |
"description": "Get the current weather for a location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state, e.g. San Francisco, New York" | |
}, | |
"unit": { | |
"type": "string", | |
"enum": ["celsius", "fahrenheit"], | |
"description": "The unit of temperature to return" | |
} | |
}, | |
"required": ["location"] | |
} | |
} | |
search_api = { | |
"name": "search", | |
"description": "Search for information on the internet", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"query": { | |
"type": "string", | |
"description": "The search query, e.g. 'latest news on AI'" | |
} | |
}, | |
"required": ["query"] | |
} | |
} | |
# 转换工具为 xLAM 的格式 | |
def convert_to_xlam_tool(tools): | |
if isinstance(tools, dict): | |
return { | |
"name": tools["name"], | |
"description": tools["description"], | |
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()} | |
} | |
elif isinstance(tools, list): | |
return [convert_to_xlam_tool(tool) for tool in tools] | |
else: | |
return tools | |
xlam_format_tools = convert_to_xlam_tool([get_weather_api, search_api]) | |
# 生成提示 | |
def build_prompt(task_instruction, format_instruction, tools, query): | |
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n" | |
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{tools}\n[END OF AVAILABLE TOOLS]\n\n" | |
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n" | |
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n" | |
return prompt | |
# 定义模型推理函数 | |
def generate_response(query): | |
# 构建输入提示 | |
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query) | |
messages = [{'role': 'user', 'content': content}] | |
# 编码输入 | |
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
# 生成输出 | |
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) | |
# 解码输出 | |
response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) | |
return response | |
# 使用 Gradio 创建简单的 Web 应用 | |
with gr.Blocks() as demo: | |
gr.Markdown("## 使用 xLAM 模型进行智能对话") | |
query = gr.Textbox(label="输入您的问题", placeholder="请输入您的问题") | |
output = gr.Textbox(label="模型响应") | |
submit_btn = gr.Button("提交") | |
submit_btn.click(fn=generate_response, inputs=query, outputs=output) | |
# 启动 Gradio 应用 | |
demo.launch() | |