import os import math import cv2 import trimesh import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import nvdiffrast.torch as dr from mesh import Mesh, safe_normalize def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'): assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" y = x.permute(0, 3, 1, 2) # NHWC -> NCHW if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger y = torch.nn.functional.interpolate(y, size, mode=min) else: # Magnification if mag == 'bilinear' or mag == 'bicubic': y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) else: y = torch.nn.functional.interpolate(y, size, mode=mag) return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC def scale_img_hwc(x, size, mag='bilinear', min='bilinear'): return scale_img_nhwc(x[None, ...], size, mag, min)[0] def scale_img_nhw(x, size, mag='bilinear', min='bilinear'): return scale_img_nhwc(x[..., None], size, mag, min)[..., 0] def scale_img_hw(x, size, mag='bilinear', min='bilinear'): return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0] def trunc_rev_sigmoid(x, eps=1e-6): x = x.clamp(eps, 1 - eps) return torch.log(x / (1 - x)) def make_divisible(x, m=8): return int(math.ceil(x / m) * m) class Renderer(nn.Module): def __init__(self, opt): super().__init__() self.opt = opt self.mesh = Mesh.load(self.opt.mesh, resize=False) if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'): self.glctx = dr.RasterizeGLContext() else: self.glctx = dr.RasterizeCudaContext() # extract trainable parameters self.v_offsets = nn.Parameter(torch.zeros_like(self.mesh.v)) self.raw_albedo = nn.Parameter(trunc_rev_sigmoid(self.mesh.albedo)) def get_params(self): params = [ {'params': self.raw_albedo, 'lr': self.opt.texture_lr}, ] if self.opt.train_geo: params.append({'params': self.v_offsets, 'lr': self.opt.geom_lr}) return params @torch.no_grad() def export_mesh(self, save_path): self.mesh.v = (self.mesh.v + self.v_offsets).detach() self.mesh.albedo = torch.sigmoid(self.raw_albedo.detach()) self.mesh.write(save_path) def render(self, pose, proj, h0, w0, ssaa=1, bg_color=1, texture_filter='linear-mipmap-linear'): # do super-sampling if ssaa != 1: h = make_divisible(h0 * ssaa, 8) w = make_divisible(w0 * ssaa, 8) else: h, w = h0, w0 results = {} # get v if self.opt.train_geo: v = self.mesh.v + self.v_offsets # [N, 3] else: v = self.mesh.v pose = torch.from_numpy(pose.astype(np.float32)).to(v.device) proj = torch.from_numpy(proj.astype(np.float32)).to(v.device) # get v_clip and render rgb v_cam = torch.matmul(F.pad(v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0) v_clip = v_cam @ proj.T rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (h, w)) alpha = (rast[0, ..., 3:] > 0).float() depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1] depth = depth.squeeze(0) # [H, W, 1] texc, texc_db = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft, rast_db=rast_db, diff_attrs='all') albedo = dr.texture(self.raw_albedo.unsqueeze(0), texc, uv_da=texc_db, filter_mode=texture_filter) # [1, H, W, 3] albedo = torch.sigmoid(albedo) # get vn and render normal if self.opt.train_geo: i0, i1, i2 = self.mesh.f[:, 0].long(), self.mesh.f[:, 1].long(), self.mesh.f[:, 2].long() v0, v1, v2 = v[i0, :], v[i1, :], v[i2, :] face_normals = torch.cross(v1 - v0, v2 - v0) face_normals = safe_normalize(face_normals) vn = torch.zeros_like(v) vn.scatter_add_(0, i0[:, None].repeat(1,3), face_normals) vn.scatter_add_(0, i1[:, None].repeat(1,3), face_normals) vn.scatter_add_(0, i2[:, None].repeat(1,3), face_normals) vn = torch.where(torch.sum(vn * vn, -1, keepdim=True) > 1e-20, vn, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device)) else: vn = self.mesh.vn normal, _ = dr.interpolate(vn.unsqueeze(0).contiguous(), rast, self.mesh.fn) normal = safe_normalize(normal[0]) # rotated normal (where [0, 0, 1] always faces camera) rot_normal = normal @ pose[:3, :3] viewcos = rot_normal[..., [2]] # antialias albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).squeeze(0) # [H, W, 3] albedo = alpha * albedo + (1 - alpha) * bg_color # ssaa if ssaa != 1: albedo = scale_img_hwc(albedo, (h0, w0)) alpha = scale_img_hwc(alpha, (h0, w0)) depth = scale_img_hwc(depth, (h0, w0)) normal = scale_img_hwc(normal, (h0, w0)) viewcos = scale_img_hwc(viewcos, (h0, w0)) results['image'] = albedo.clamp(0, 1) results['alpha'] = alpha results['depth'] = depth results['normal'] = (normal + 1) / 2 results['viewcos'] = viewcos return results