|
|
|
import math |
|
from inspect import isfunction |
|
import torch |
|
from torch import nn |
|
import torch.distributed as dist |
|
|
|
|
|
def gather_data(data, return_np=True): |
|
''' gather data from multiple processes to one list ''' |
|
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())] |
|
dist.all_gather(data_list, data) |
|
if return_np: |
|
data_list = [data.cpu().numpy() for data in data_list] |
|
return data_list |
|
|
|
def autocast(f): |
|
def do_autocast(*args, **kwargs): |
|
with torch.cuda.amp.autocast(enabled=True, |
|
dtype=torch.get_autocast_gpu_dtype(), |
|
cache_enabled=torch.is_autocast_cache_enabled()): |
|
return f(*args, **kwargs) |
|
return do_autocast |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def noise_like(shape, device, repeat=False): |
|
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) |
|
noise = lambda: torch.randn(shape, device=device) |
|
return repeat_noise() if repeat else noise() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def identity(*args, **kwargs): |
|
return nn.Identity() |
|
|
|
def uniq(arr): |
|
return{el: True for el in arr}.keys() |
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
def ismap(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] > 3) |
|
|
|
def isimage(x): |
|
if not isinstance(x,torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) |
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
def shape_to_str(x): |
|
shape_str = "x".join([str(x) for x in x.shape]) |
|
return shape_str |
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
ckpt = torch.utils.checkpoint.checkpoint |
|
def checkpoint(func, inputs, params, flag): |
|
""" |
|
Evaluate a function without caching intermediate activations, allowing for |
|
reduced memory at the expense of extra compute in the backward pass. |
|
:param func: the function to evaluate. |
|
:param inputs: the argument sequence to pass to `func`. |
|
:param params: a sequence of parameters `func` depends on but does not |
|
explicitly take as arguments. |
|
:param flag: if False, disable gradient checkpointing. |
|
""" |
|
if flag: |
|
return ckpt(func, *inputs, use_reentrant=False) |
|
else: |
|
return func(*inputs) |
|
|
|
|