File size: 2,954 Bytes
ef187eb
 
e7915f0
0cffd40
 
ef187eb
2b0f02c
0cffd40
8b1e96d
0cffd40
8b1e96d
 
0cccf69
 
8b1e96d
 
 
ec35e66
 
 
 
 
 
8b1e96d
 
e7915f0
 
8b1e96d
 
 
f286ae5
8b1e96d
 
 
 
 
 
 
 
3494613
6380dba
8b1e96d
3819ced
67399b5
fee8445
 
67399b5
0cffd40
ef187eb
8b1e96d
0cffd40
 
8b3ca8d
 
 
 
 
 
 
 
 
 
0cffd40
8b1e96d
0cffd40
2b0f02c
8b1e96d
3eaeeea
8b1e96d
0cffd40
8b1e96d
fe16630
8b1e96d
8b3ca8d
 
 
 
 
 
fe16630
8b3ca8d
8b1e96d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
import spaces
from PIL import Image


# Constants
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "tianweiy/DMD2"
checkpoints = {
    "1-Step" : ["dmd2_sdxl_1step_unet_fp16.bin", 1],
    "4-Step" : ["dmd2_sdxl_4step_unet_fp16.bin", 4],
}
loaded = None

CSS = """
.gradio-container {
  max-width: 690px !important;
}
"""

# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
    unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
    pipe = DiffusionPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")


# Function 
@spaces.GPU()
def generate_image(prompt, ckpt):
    global loaded
    print(prompt, ckpt)

    checkpoint = checkpoints[ckpt][0]
    num_inference_steps = checkpoints[ckpt][1]

    if loaded != num_inference_steps:
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
        pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
        loaded = num_inference_steps

    if loaded == 1:
        results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0, timesteps=[399])
    else:
        results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0, timesteps=[999, 749, 499, 249])


    return results.images[0]


examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic",
    "Ironman VS Hulk, ultrarealistic",
    "a CUTE robot artist painting on an easel",
    "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
    "An alien holding sign board contain word 'Flash', futuristic, neonpunk",
    "Kids going to school, Anime style"
]


# Gradio Interface

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML("<h1><center>Adobe DMD2🦖</center></h1>")
    gr.HTML("<p><center><a href='https://huggingface.co/tianweiy/DMD2'>DMD2</a> text-to-image generation</center></p>")
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
            ckpt = gr.Dropdown(label='Steps',choices=['1-Step', '4-Step'], value='4-Step', interactive=True)
            submit = gr.Button(scale=1, variant='primary')
    img = gr.Image(label='DMD2 Generated Image')    
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=img,
        fn=generate_image,
        cache_examples="lazy",
    )

    prompt.submit(fn=generate_image,
                 inputs=[prompt, ckpt],
                 outputs=img,
                 )
    submit.click(fn=generate_image,
                 inputs=[prompt, ckpt],
                 outputs=img,
                 )
    
demo.queue().launch()