Update app.py
Browse files
app.py
CHANGED
@@ -1,243 +1,65 @@
|
|
1 |
-
from diffusers import
|
2 |
-
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
3 |
-
from accelerate import Accelerator
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
5 |
import spaces
|
6 |
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
import torch
|
9 |
-
import time
|
10 |
import PIL
|
11 |
|
|
|
12 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
self.accelerator = accelerator
|
40 |
-
self.image_resolution = image_resolution
|
41 |
-
self.latent_resolution = latent_resolution
|
42 |
-
self.num_train_timesteps = num_train_timesteps
|
43 |
-
self.vae_downsample_ratio = image_resolution // latent_resolution
|
44 |
-
self.conditioning_timestep = conditioning_timestep
|
45 |
-
|
46 |
-
self.scheduler = DDIMScheduler.from_pretrained(model_id,subfolder="scheduler")
|
47 |
-
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
48 |
-
self.num_step = num_step
|
49 |
-
|
50 |
-
def create_generator(self, model_id, checkpoint_path):
|
51 |
-
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE)
|
52 |
-
state_dict = torch.load(checkpoint_path)
|
53 |
-
generator.load_state_dict(state_dict, strict=True)
|
54 |
-
generator.requires_grad_(False)
|
55 |
-
return generator
|
56 |
-
|
57 |
-
def build_condition_input(self, height, width):
|
58 |
-
original_size = (height, width)
|
59 |
-
target_size = (height, width)
|
60 |
-
crop_top_left = (0, 0)
|
61 |
-
|
62 |
-
add_time_ids = list(original_size + crop_top_left + target_size)
|
63 |
-
add_time_ids = torch.tensor([add_time_ids], device="cuda", dtype=self.DTYPE)
|
64 |
-
return add_time_ids
|
65 |
-
|
66 |
-
def _encode_prompt(self, prompt):
|
67 |
-
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids
|
68 |
-
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids
|
69 |
-
|
70 |
-
prompt_dict = {
|
71 |
-
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device),
|
72 |
-
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device)
|
73 |
-
}
|
74 |
-
return prompt_dict
|
75 |
-
|
76 |
-
@staticmethod
|
77 |
-
def _get_time():
|
78 |
-
return time.time()
|
79 |
-
|
80 |
-
|
81 |
-
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
|
82 |
-
#alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
83 |
-
print("sampling...")
|
84 |
-
if self.num_step == 1:
|
85 |
-
all_timesteps = [self.conditioning_timestep]
|
86 |
-
step_interval = 0
|
87 |
-
elif self.num_step == 4:
|
88 |
-
all_timesteps = [999, 749, 499, 249]
|
89 |
-
step_interval = 250
|
90 |
-
else:
|
91 |
-
raise NotImplementedError()
|
92 |
-
|
93 |
-
noise = noise.to(torch.float16)
|
94 |
-
print(f'noise: {noise.dtype}')
|
95 |
-
#prompt_embed = prompt_embed.to(torch.float32)
|
96 |
-
DTYPE = prompt_embed.dtype
|
97 |
-
print(f'prompt_embed: {DTYPE}')
|
98 |
-
|
99 |
-
for constant in all_timesteps:
|
100 |
-
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
101 |
-
#current_timesteps = current_timesteps.to(torch.float32)
|
102 |
-
print(f'current_timestpes: {current_timesteps.dtype}')
|
103 |
-
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions)
|
104 |
-
print(eval_images.dtype)
|
105 |
-
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
106 |
-
print(eval_images.dtype)
|
107 |
-
next_timestep = current_timesteps - step_interval
|
108 |
-
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE)
|
109 |
-
print(noise.dtype)
|
110 |
-
if fast_vae_decode:
|
111 |
-
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
|
112 |
-
else:
|
113 |
-
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0]
|
114 |
-
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
|
115 |
-
return eval_images
|
116 |
-
|
117 |
-
|
118 |
-
@torch.no_grad()
|
119 |
-
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode):
|
120 |
-
print("Running model inference...")
|
121 |
-
|
122 |
-
if seed == -1:
|
123 |
-
seed = np.random.randint(0, 1000000)
|
124 |
-
|
125 |
-
generator = torch.manual_seed(seed)
|
126 |
-
|
127 |
-
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
128 |
-
|
129 |
-
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator)
|
130 |
-
|
131 |
-
prompt_inputs = self._encode_prompt(prompt)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
|
136 |
-
|
137 |
-
batch_prompt_embeds, batch_pooled_prompt_embeds = (
|
138 |
-
prompt_embeds.repeat(num_images, 1, 1),
|
139 |
-
pooled_prompt_embeds.repeat(num_images, 1, 1)
|
140 |
-
)
|
141 |
-
|
142 |
-
unet_added_conditions = {
|
143 |
-
"time_ids": add_time_ids,
|
144 |
-
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
145 |
-
}
|
146 |
-
|
147 |
-
|
148 |
-
print(f'noise: {noise.dtype}')
|
149 |
-
print(f'prompt: {batch_prompt_embeds.dtype}')
|
150 |
-
print(unet_added_conditions['time_ids'].dtype)
|
151 |
-
print(unet_added_conditions['text_embeds'].dtype)
|
152 |
-
print("________")
|
153 |
-
|
154 |
-
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode)
|
155 |
-
|
156 |
-
end_time = self._get_time()
|
157 |
-
|
158 |
-
output_image_list = []
|
159 |
-
for image in eval_images:
|
160 |
-
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy()))
|
161 |
-
|
162 |
-
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
|
163 |
-
|
164 |
-
@spaces.GPU()
|
165 |
-
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
|
166 |
-
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
|
167 |
-
beta_prod_t = 1 - alpha_prod_t
|
168 |
-
|
169 |
-
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
170 |
-
return pred_original_sample
|
171 |
|
172 |
-
|
173 |
-
def __init__(self, model_id, revision, accelerator, dtype=torch.float32):
|
174 |
-
super().__init__()
|
175 |
|
176 |
-
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(0).to(dtype=dtype)
|
177 |
-
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(0).to(dtype=dtype)
|
178 |
|
179 |
-
self.accelerator = accelerator
|
180 |
|
181 |
-
|
182 |
-
text_input_ids_one = batch['text_input_ids_one'].to(0).squeeze(1)
|
183 |
-
text_input_ids_two = batch['text_input_ids_two'].to(0).squeeze(1)
|
184 |
-
prompt_embeds_list = []
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
192 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
193 |
-
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
194 |
-
prompt_embeds_list.append(prompt_embeds)
|
195 |
-
|
196 |
-
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
|
197 |
-
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1)
|
198 |
-
|
199 |
-
return prompt_embeds, pooled_prompt_embeds
|
200 |
-
|
201 |
-
|
202 |
-
def create_demo():
|
203 |
-
TITLE = "# DMD2-SDXL Demo"
|
204 |
-
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
205 |
-
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename)
|
206 |
-
precision = "float16"
|
207 |
-
image_resolution = 1024
|
208 |
-
latent_resolution = 128
|
209 |
-
num_train_timesteps = 1000
|
210 |
-
conditioning_timestep = 999
|
211 |
-
num_step = 4
|
212 |
-
revision = None
|
213 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
214 |
-
torch.backends.cudnn.allow_tf32 = True
|
215 |
-
|
216 |
-
accelerator = Accelerator()
|
217 |
-
|
218 |
-
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator)
|
219 |
-
|
220 |
-
with gr.Blocks() as demo:
|
221 |
-
gr.Markdown(TITLE)
|
222 |
with gr.Row():
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
return demo
|
239 |
-
|
240 |
-
if __name__ == "__main__":
|
241 |
-
demo = create_demo()
|
242 |
-
demo.queue(api_open=False)
|
243 |
-
demo.launch(show_error=True)
|
|
|
1 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
|
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
+
from safetensors.torch import load_file
|
4 |
import spaces
|
5 |
import gradio as gr
|
|
|
6 |
import torch
|
|
|
7 |
import PIL
|
8 |
|
9 |
+
# Constants
|
10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
11 |
+
repo = "tianweiy/DMD2"
|
12 |
+
checkpoints = {
|
13 |
+
"1-Step" : ["dmd2_sdxl_1step_unet.bin", 1],
|
14 |
+
"4-Step" : ["dmd2_sdxl_4step_unet.bin", 4],
|
15 |
+
}
|
16 |
+
loaded = None
|
17 |
+
|
18 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
19 |
+
if torch.cuda.is_available():
|
20 |
+
pipe = DiffusionPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
21 |
+
|
22 |
+
|
23 |
+
# Function
|
24 |
+
@spaces.GPU(enable_queue=True)
|
25 |
+
def generate_image(prompt, ckpt):
|
26 |
+
global loaded
|
27 |
+
print(prompt, ckpt)
|
28 |
+
|
29 |
+
checkpoint = checkpoints[ckpt][0]
|
30 |
+
num_inference_steps = checkpoints[ckpt][1]
|
31 |
+
|
32 |
+
if loaded != num_inference_steps:
|
33 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
34 |
+
unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoints)), map_location="cuda"))
|
35 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
36 |
+
loaded = num_inference_steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
return results.images[0]
|
|
|
|
|
41 |
|
|
|
|
|
42 |
|
|
|
43 |
|
44 |
+
# Gradio Interface
|
|
|
|
|
|
|
45 |
|
46 |
+
with gr.Blocks(css="style.css") as demo:
|
47 |
+
gr.HTML("<h1><center>Adobe DMD2🦖</center></h1>")
|
48 |
+
gr.HTML("<p><center><a href='https://huggingface.co/tianweiy/DMD2'>https://huggingface.co/tianweiy/DMD2</a> text-to-image generation</center></p>")
|
49 |
+
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with gr.Row():
|
51 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
52 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
53 |
+
submit = gr.Button(scale=1, variant='primary')
|
54 |
+
img = gr.Image(label='DMD2 Generated Image')
|
55 |
+
|
56 |
+
prompt.submit(fn=generate_image,
|
57 |
+
inputs=[prompt, ckpt],
|
58 |
+
outputs=img,
|
59 |
+
)
|
60 |
+
submit.click(fn=generate_image,
|
61 |
+
inputs=[prompt, ckpt],
|
62 |
+
outputs=img,
|
63 |
+
)
|
64 |
+
|
65 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|