Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
|
|
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
from safetensors.torch import load_file
|
4 |
import spaces
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import PIL
|
8 |
|
9 |
# Constants
|
10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
@@ -23,8 +23,7 @@ CSS = """
|
|
23 |
|
24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
25 |
if torch.cuda.is_available():
|
26 |
-
|
27 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
28 |
|
29 |
|
30 |
# Function
|
@@ -37,12 +36,13 @@ def generate_image(prompt, ckpt):
|
|
37 |
num_inference_steps = checkpoints[ckpt][1]
|
38 |
|
39 |
if loaded != num_inference_steps:
|
40 |
-
pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
|
41 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
|
|
42 |
loaded = num_inference_steps
|
43 |
|
44 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
45 |
|
|
|
46 |
return results.images[0]
|
47 |
|
48 |
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from safetensors.torch import load_file
|
6 |
import spaces
|
7 |
+
from PIL import Image
|
|
|
|
|
8 |
|
9 |
# Constants
|
10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
23 |
|
24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
25 |
if torch.cuda.is_available():
|
26 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
|
|
27 |
|
28 |
|
29 |
# Function
|
|
|
36 |
num_inference_steps = checkpoints[ckpt][1]
|
37 |
|
38 |
if loaded != num_inference_steps:
|
|
|
39 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
40 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
41 |
loaded = num_inference_steps
|
42 |
|
43 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
44 |
|
45 |
+
|
46 |
return results.images[0]
|
47 |
|
48 |
|