flx-pulid / eva_clip /transformer.py
邬彦泽
1
aa8012e
raw
history blame
29 kB
import os
import logging
from collections import OrderedDict
import math
import warnings
from typing import Callable, Optional, Sequence
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
from .utils import to_2tuple
if os.getenv('ENV_TYPE') == 'deepspeed':
try:
import deepspeed
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
except:
print("Please 'pip install deepspeed'")
deepspeed = None
from torch.utils.checkpoint import checkpoint
else:
from torch.utils.checkpoint import checkpoint
try:
import xformers.ops as xops
except ImportError:
xops = None
print("Please 'pip install xformers'")
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
class LayerNormFp32(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x: torch.Tensor):
output = F.layer_norm(
x.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(x)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class QuickGELU(nn.Module):
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
def forward(self, x):
if not self.training or self.prob == 0.:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
if self.training and os.getenv('RoPE') == '1':
return x, patch_indices_keep
return x
def _in_projection_packed(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
w: torch.Tensor,
b: Optional[torch.Tensor] = None,
):
"""
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
"""
E = q.size(-1)
if k is v:
if q is k:
# self-attention
return F.linear(q, w, b).chunk(3, dim=-1)
else:
# encoder-decoder attention
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
else:
w_q, w_k, w_v = w.chunk(3)
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
scaled_cosine=False,
scale_heads=False,
logit_scale_max=math.log(1. / 0.01),
attn_drop=0.,
proj_drop=0.,
xattn=False,
rope=False
):
super().__init__()
self.scaled_cosine = scaled_cosine
self.scale_heads = scale_heads
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.logit_scale_max = logit_scale_max
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
if qkv_bias:
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
else:
self.in_proj_bias = None
if self.scaled_cosine:
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
else:
self.logit_scale = None
self.attn_drop = nn.Dropout(attn_drop)
if self.scale_heads:
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
else:
self.head_scale = None
self.out_proj = nn.Linear(dim, dim)
self.out_drop = nn.Dropout(proj_drop)
self.xattn = xattn
self.xattn_drop = attn_drop
self.rope = rope
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
L, N, C = x.shape
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
if self.xattn:
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
x = xops.memory_efficient_attention(
q, k, v,
p=self.xattn_drop,
scale=self.scale if self.logit_scale is None else None,
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
)
else:
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
if self.logit_scale is not None:
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
attn = attn.view(N, self.num_heads, L, L) * logit_scale
attn = attn.view(-1, L, L)
else:
q = q * self.scale
attn = torch.bmm(q, k.transpose(-1, -2))
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
attn += attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = torch.bmm(attn, v)
if self.head_scale is not None:
x = x.view(N, self.num_heads, L, C) * self.head_scale
x = x.view(-1, L, C)
x = x.transpose(0, 1).reshape(L, N, C)
x = self.out_proj(x)
x = self.out_drop(x)
return x
class CustomAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
scaled_cosine=True,
scale_heads=False,
logit_scale_max=math.log(1. / 0.01),
attn_drop=0.,
proj_drop=0.,
xattn=False
):
super().__init__()
self.scaled_cosine = scaled_cosine
self.scale_heads = scale_heads
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.logit_scale_max = logit_scale_max
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
if qkv_bias:
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
else:
self.in_proj_bias = None
if self.scaled_cosine:
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
else:
self.logit_scale = None
self.attn_drop = nn.Dropout(attn_drop)
if self.scale_heads:
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
else:
self.head_scale = None
self.out_proj = nn.Linear(dim, dim)
self.out_drop = nn.Dropout(proj_drop)
self.xattn = xattn
self.xattn_drop = attn_drop
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
N_q, B_q, C_q = q.shape
N_k, B_k, C_k = k.shape
N_v, B_v, C_v = v.shape
if self.xattn:
# B, N, C -> B, N, num_heads, C
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
x = xops.memory_efficient_attention(
q, k, v,
p=self.xattn_drop,
scale=self.scale if self.logit_scale is None else None,
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
)
else:
# B*H, L, C
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
if self.logit_scale is not None:
# B*H, N_q, N_k
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
attn = attn.view(-1, N_q, N_k)
else:
q = q * self.scale
attn = torch.bmm(q, k.transpose(-1, -2))
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
attn += attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = torch.bmm(attn, v)
if self.head_scale is not None:
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
x = x.view(-1, N_q, C_q)
x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
x = self.out_proj(x)
x = self.out_drop(x)
return x
class CustomResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
scale_cosine_attn: bool = False,
scale_heads: bool = False,
scale_attn: bool = False,
scale_fc: bool = False,
cross_attn: bool = False,
xattn: bool = False,
):
super().__init__()
self.ln_1 = norm_layer(d_model)
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
self.attn = CustomAttention(
d_model, n_head,
qkv_bias=True,
attn_drop=0.,
proj_drop=0.,
scaled_cosine=scale_cosine_attn,
scale_heads=scale_heads,
xattn=xattn
)
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
q = q + self.ls_2(self.mlp(self.ln_2(q)))
return q
class CustomTransformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
scale_cosine_attn: bool = True,
scale_heads: bool = False,
scale_attn: bool = False,
scale_fc: bool = False,
cross_attn: bool = False,
xattn: bool = False,
):
super().__init__()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.xattn = xattn
self.resblocks = nn.ModuleList([
CustomResidualAttentionBlock(
width,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
scale_cosine_attn=scale_cosine_attn,
scale_heads=scale_heads,
scale_attn=scale_attn,
scale_fc=scale_fc,
cross_attn=cross_attn,
xattn=xattn)
for _ in range(layers)
])
def get_cast_dtype(self) -> torch.dtype:
return self.resblocks[0].mlp.c_fc.weight.dtype
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
if k is None and v is None:
k = v = q
for r in self.resblocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
q = checkpoint(r, q, k, v, attn_mask)
else:
q = r(q, k, v, attn_mask=attn_mask)
return q
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
xattn: bool = False,
):
super().__init__()
self.ln_1 = norm_layer(d_model)
if xattn:
self.attn = Attention(d_model, n_head, xattn=True)
else:
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.xattn = xattn
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
if self.xattn:
return self.attn(x, attn_mask=attn_mask)
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
x = x + self.ls_2(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
xattn: bool = False,
):
super().__init__()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
for _ in range(layers)
])
def get_cast_dtype(self) -> torch.dtype:
return self.resblocks[0].mlp.c_fc.weight.dtype
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
for r in self.resblocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
class VisionTransformer(nn.Module):
def __init__(
self,
image_size: int,
patch_size: int,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
ls_init_value: float = None,
patch_dropout: float = 0.,
global_average_pool: bool = False,
output_dim: int = 512,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
xattn: bool = False,
):
super().__init__()
self.image_size = to_2tuple(image_size)
self.patch_size = to_2tuple(patch_size)
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
self.ln_pre = norm_layer(width)
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
xattn=xattn
)
self.global_average_pool = global_average_pool
self.ln_post = norm_layer(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
for param in self.parameters():
param.requires_grad = False
if unlocked_groups != 0:
groups = [
[
self.conv1,
self.class_embedding,
self.positional_embedding,
self.ln_pre,
],
*self.transformer.resblocks[:-1],
[
self.transformer.resblocks[-1],
self.ln_post,
],
self.proj,
]
def _unlock(x):
if isinstance(x, Sequence):
for g in x:
_unlock(g)
else:
if isinstance(x, torch.nn.Parameter):
x.requires_grad = True
else:
for p in x.parameters():
p.requires_grad = True
_unlock(groups[-unlocked_groups:])
def get_num_layers(self):
return self.transformer.layers
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
return {'positional_embedding', 'class_embedding'}
def forward(self, x: torch.Tensor, return_all_features: bool=False):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
x = self.patch_dropout(x)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
if not return_all_features:
if self.global_average_pool:
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
else:
x = x[:, 0]
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x
class TextTransformer(nn.Module):
def __init__(
self,
context_length: int = 77,
vocab_size: int = 49408,
width: int = 512,
heads: int = 8,
layers: int = 12,
ls_init_value: float = None,
output_dim: int = 512,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
xattn: bool= False,
attn_mask: bool = True
):
super().__init__()
self.context_length = context_length
self.vocab_size = vocab_size
self.width = width
self.output_dim = output_dim
self.token_embedding = nn.Embedding(vocab_size, width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
self.transformer = Transformer(
width=width,
layers=layers,
heads=heads,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
xattn=xattn
)
self.xattn = xattn
self.ln_final = norm_layer(width)
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
if attn_mask:
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
else:
self.attn_mask = None
self.init_parameters()
def init_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
# return {'positional_embedding', 'token_embedding'}
return {'positional_embedding'}
def get_num_layers(self):
return self.transformer.layers
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text, return_all_features: bool=False):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_mask=self.attn_mask)
# x = self.transformer(x) # no attention mask is applied
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
if not return_all_features:
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x