Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,489 Bytes
833ef3a 456ed62 833ef3a 8d65abf c43a736 8d65abf c43a736 8d65abf 833ef3a 456ed62 3960c92 c43a736 456ed62 3960c92 8d65abf 3960c92 8d65abf 833ef3a c2d0882 c43a736 c2d0882 833ef3a 456ed62 3960c92 833ef3a 3960c92 c43a736 c2d0882 833ef3a 3960c92 c43a736 e683bf1 833ef3a 8d65abf c43a736 8d65abf c43a736 833ef3a c2d0882 8d65abf 3960c92 8d65abf c2d0882 c43a736 8d65abf 3960c92 e683bf1 8d65abf e683bf1 c43a736 8d65abf e683bf1 8d65abf 3960c92 8d65abf c2d0882 c43a736 c2d0882 833ef3a c2d0882 833ef3a 8d65abf c43a736 833ef3a c43a736 833ef3a 8d65abf 833ef3a c43a736 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a c43a736 833ef3a c43a736 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a d0f30fa 833ef3a c43a736 833ef3a c43a736 833ef3a 0fb7ee6 833ef3a 4c9245b 3960c92 e683bf1 8d65abf e683bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import gc
# Clear memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float32
huggingface_token = os.getenv("HF_TOKEN")
# Modified model configuration
model_config = {
"low_cpu_mem_usage": True,
"torch_dtype": dtype,
"use_safetensors": False, # Disabled safetensors
}
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes", "*.bin"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load models with modified configuration
try:
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
**model_config
)
controlnet.to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
**model_config
)
pipe.to(device)
except Exception as e:
print(f"Error loading models: {str(e)}")
raise
# Enable optimizations
pipe.enable_attention_slicing(1)
pipe.enable_vae_slicing()
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 64 * 64
def process_input(input_image, upscale_factor):
input_image = input_image.convert('RGB')
w, h = input_image.size
max_size = int(np.sqrt(MAX_PIXEL_BUDGET))
new_w = min(w, max_size)
new_h = min(h, max_size)
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
w = new_w - new_w % 8
h = new_h - new_h % 8
return input_image.resize((w, h)), w, h
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image, w, h = process_input(input_image, upscale_factor)
with torch.inference_mode():
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt="",
control_image=input_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=1.5,
height=h,
width=w,
generator=generator,
).images[0]
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return [input_image, image, seed]
except Exception as e:
gr.Error(f"Error: {str(e)}")
return None
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=10,
step=1,
value=5,
)
upscale_factor = gr.Slider(
label="Scale",
minimum=1,
maximum=1,
step=1,
value=1,
)
controlnet_conditioning_scale = gr.Slider(
label="Control Scale",
minimum=0.1,
maximum=0.3,
step=0.1,
value=0.2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Random Seed", value=True)
with gr.Row():
result = ImageSlider(label="Result", type="pil", interactive=True)
current_dir = os.path.dirname(os.path.abspath(__file__))
examples = gr.Examples(
examples=[
[42, False, os.path.join(current_dir, "z1.webp"), 5, 1, 0.2],
[42, False, os.path.join(current_dir, "z2.webp"), 5, 1, 0.2],
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer,
outputs=result,
cache_examples=False,
)
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
)
# Launch configuration
demo.queue(max_size=1).launch(
share=False,
debug=True,
show_error=True,
max_threads=1,
enable_queue=True,
cache_examples=False,
quiet=True,
) |