File size: 7,584 Bytes
833ef3a
 
 
 
456ed62
833ef3a
456ed62
833ef3a
 
 
 
 
 
456ed62
833ef3a
 
 
 
 
 
456ed62
e683bf1
833ef3a
 
c2d0882
e683bf1
833ef3a
 
 
c2d0882
b725215
e683bf1
 
 
 
 
5ef4699
456ed62
833ef3a
c2d0882
 
833ef3a
c2d0882
 
833ef3a
456ed62
e683bf1
833ef3a
c2d0882
e683bf1
 
 
833ef3a
c2d0882
833ef3a
c2d0882
 
e683bf1
 
 
456ed62
833ef3a
e683bf1
c2d0882
e683bf1
 
 
c2d0882
e683bf1
833ef3a
e683bf1
833ef3a
c2d0882
 
 
 
e683bf1
c2d0882
 
833ef3a
 
e683bf1
 
 
833ef3a
 
 
 
 
 
 
 
e683bf1
833ef3a
 
e683bf1
833ef3a
 
 
 
 
e683bf1
 
833ef3a
 
 
 
 
 
 
 
 
 
c2d0882
833ef3a
 
 
 
 
 
 
 
 
c2d0882
 
 
 
 
e683bf1
c2d0882
 
 
 
 
 
 
 
 
833ef3a
 
c2d0882
 
 
 
 
 
 
e683bf1
 
 
 
 
 
 
 
 
 
 
c2d0882
 
 
e683bf1
c2d0882
833ef3a
c2d0882
 
 
833ef3a
c2d0882
 
 
 
 
 
 
 
833ef3a
c2d0882
833ef3a
 
 
 
 
 
 
 
 
 
e683bf1
833ef3a
e683bf1
833ef3a
 
 
 
e683bf1
833ef3a
e683bf1
833ef3a
 
 
 
e683bf1
833ef3a
e683bf1
833ef3a
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f30fa
 
833ef3a
 
e683bf1
 
833ef3a
 
 
 
 
 
 
 
 
 
 
 
 
0fb7ee6
833ef3a
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9245b
e683bf1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download

css = """
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
"""

# Device and dtype setup with lower precision
if torch.cuda.is_available():
    power_device = "GPU"
    device = "cuda" 
    dtype = torch.float16  # Changed to float16 for less memory usage
else:
    power_device = "CPU"
    device = "cpu"
    dtype = torch.float32

# Reduce CUDA memory usage
torch.cuda.empty_cache()
if torch.cuda.is_available():
    torch.cuda.set_per_process_memory_fraction(0.7)  # Use only 70% of GPU memory

huggingface_token = os.getenv("HUGGINFACE_TOKEN")

model_path = snapshot_download(
    repo_id="black-forest-labs/FLUX.1-dev",
    repo_type="model",
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="FLUX.1-dev", 
    token=huggingface_token,
)

# Load pipeline with more memory optimizations
controlnet = FluxControlNetModel.from_pretrained(
    "jasperai/Flux.1-dev-Controlnet-Upscaler",
    torch_dtype=dtype,
    low_cpu_mem_usage=True,
    use_safetensors=True
).to(device)

pipe = FluxControlNetPipeline.from_pretrained(
    model_path,
    controlnet=controlnet,
    torch_dtype=dtype,
    low_cpu_mem_usage=True,
    use_safetensors=True
)

# Enable all possible memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()

# Further reduce memory usage
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 256 * 256  # Further reduced from 512 * 512

def check_resources():
    if torch.cuda.is_available():
        gpu_memory = torch.cuda.get_device_properties(0).total_memory
        memory_allocated = torch.cuda.memory_allocated(0)
        if memory_allocated/gpu_memory > 0.8:  # 80% threshold
            return False
    return True

def process_input(input_image, upscale_factor, **kwargs):
    # Convert image to RGB mode to ensure compatibility
    input_image = input_image.convert('RGB')
    
    w, h = input_image.size
    w_original, h_original = w, h
    aspect_ratio = w / h

    was_resized = False

    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(
            f"Requested output image is too large. Resizing..."
        )
        gr.Info(
            f"Resizing input image to fit memory constraints..."
        )
        input_image = input_image.resize(
            (
                int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
                int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
            ),
            Image.LANCZOS
        )
        was_resized = True

    # resize to multiple of 8
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8

    return input_image.resize((w, h)), w_original, h_original, was_resized

@spaces.GPU
def infer(
    seed,
    randomize_seed,
    input_image,
    num_inference_steps,
    upscale_factor,
    controlnet_conditioning_scale,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        if not check_resources():
            gr.Warning("System resources are running low. Try reducing parameters.")
            return None

        # Clear CUDA cache before processing
        if device == "cuda":
            torch.cuda.empty_cache()

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
        true_input_image = input_image
        input_image, w_original, h_original, was_resized = process_input(
            input_image, upscale_factor
        )

        # rescale with upscale factor
        w, h = input_image.size
        control_image = input_image.resize((w * upscale_factor, h * upscale_factor))

        generator = torch.Generator().manual_seed(seed)

        gr.Info("Upscaling image...")
        with torch.inference_mode():  # Use inference mode to save memory
            image = pipe(
                prompt="",
                control_image=control_image,
                controlnet_conditioning_scale=controlnet_conditioning_scale,
                num_inference_steps=num_inference_steps,
                guidance_scale=3.5,
                height=control_image.size[1],
                width=control_image.size[0],
                generator=generator,
            ).images[0]

        if was_resized:
            gr.Info(
                f"Resizing output image to final size..."
            )

        # resize to target desired size
        image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
        return [true_input_image, image, seed]

    except RuntimeError as e:
        if "out of memory" in str(e):
            gr.Warning("Not enough GPU memory. Try reducing the upscale factor or image size.")
            return None
        raise e
    except Exception as e:
        gr.Error(f"An error occurred: {str(e)}")
        return None

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Row():
        run_button = gr.Button(value="Run")

    with gr.Row():
        with gr.Column(scale=4):
            input_im = gr.Image(label="Input Image", type="pil")
        with gr.Column(scale=1):
            num_inference_steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=8,
                maximum=30,  # Reduced from 50
                step=1,
                value=20,    # Reduced from 28
            )
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=2,
                step=1,
                value=1,    # Reduced default
            )
            controlnet_conditioning_scale = gr.Slider(
                label="Controlnet Conditioning Scale",
                minimum=0.1,
                maximum=1.0,  # Reduced from 1.5
                step=0.1,
                value=0.5,   # Reduced from 0.6
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    with gr.Row():
        result = ImageSlider(label="Input / Output", type="pil", interactive=True)

    current_dir = os.path.dirname(os.path.abspath(__file__))
    
    examples = gr.Examples(
        examples=[
            [42, False, os.path.join(current_dir, "z1.webp"), 20, 1, 0.5],  # Reduced parameters
            [42, False, os.path.join(current_dir, "z2.webp"), 20, 1, 0.5],  # Reduced parameters
        ],
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        fn=infer,
        outputs=result,
        cache_examples="lazy",
    )

    gr.on(
        [run_button.click],
        fn=infer,
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        outputs=result,
        show_api=False,
    )

# Launch with minimal memory usage
demo.queue(max_size=1).launch(
    share=False,
    debug=True,
    show_error=True,
    max_threads=1,
    enable_queue=True
)