Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,584 Bytes
833ef3a 456ed62 833ef3a 456ed62 833ef3a 456ed62 833ef3a 456ed62 e683bf1 833ef3a c2d0882 e683bf1 833ef3a c2d0882 b725215 e683bf1 5ef4699 456ed62 833ef3a c2d0882 833ef3a c2d0882 833ef3a 456ed62 e683bf1 833ef3a c2d0882 e683bf1 833ef3a c2d0882 833ef3a c2d0882 e683bf1 456ed62 833ef3a e683bf1 c2d0882 e683bf1 c2d0882 e683bf1 833ef3a e683bf1 833ef3a c2d0882 e683bf1 c2d0882 833ef3a e683bf1 833ef3a e683bf1 833ef3a e683bf1 833ef3a e683bf1 833ef3a c2d0882 833ef3a c2d0882 e683bf1 c2d0882 833ef3a c2d0882 e683bf1 c2d0882 e683bf1 c2d0882 833ef3a c2d0882 833ef3a c2d0882 833ef3a c2d0882 833ef3a e683bf1 833ef3a e683bf1 833ef3a e683bf1 833ef3a e683bf1 833ef3a e683bf1 833ef3a e683bf1 833ef3a d0f30fa 833ef3a e683bf1 833ef3a 0fb7ee6 833ef3a 4c9245b e683bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
# Device and dtype setup with lower precision
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
dtype = torch.float16 # Changed to float16 for less memory usage
else:
power_device = "CPU"
device = "cpu"
dtype = torch.float32
# Reduce CUDA memory usage
torch.cuda.empty_cache()
if torch.cuda.is_available():
torch.cuda.set_per_process_memory_fraction(0.7) # Use only 70% of GPU memory
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load pipeline with more memory optimizations
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=dtype,
low_cpu_mem_usage=True,
use_safetensors=True
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
torch_dtype=dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
# Enable all possible memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
# Further reduce memory usage
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 256 * 256 # Further reduced from 512 * 512
def check_resources():
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory
memory_allocated = torch.cuda.memory_allocated(0)
if memory_allocated/gpu_memory > 0.8: # 80% threshold
return False
return True
def process_input(input_image, upscale_factor, **kwargs):
# Convert image to RGB mode to ensure compatibility
input_image = input_image.convert('RGB')
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large. Resizing..."
)
gr.Info(
f"Resizing input image to fit memory constraints..."
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
),
Image.LANCZOS
)
was_resized = True
# resize to multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w_original, h_original, was_resized
@spaces.GPU
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
try:
if not check_resources():
gr.Warning("System resources are running low. Try reducing parameters.")
return None
# Clear CUDA cache before processing
if device == "cuda":
torch.cuda.empty_cache()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
true_input_image = input_image
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
# rescale with upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
generator = torch.Generator().manual_seed(seed)
gr.Info("Upscaling image...")
with torch.inference_mode(): # Use inference mode to save memory
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
if was_resized:
gr.Info(
f"Resizing output image to final size..."
)
# resize to target desired size
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
return [true_input_image, image, seed]
except RuntimeError as e:
if "out of memory" in str(e):
gr.Warning("Not enough GPU memory. Try reducing the upscale factor or image size.")
return None
raise e
except Exception as e:
gr.Error(f"An error occurred: {str(e)}")
return None
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=30, # Reduced from 50
step=1,
value=20, # Reduced from 28
)
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=2,
step=1,
value=1, # Reduced default
)
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.1,
maximum=1.0, # Reduced from 1.5
step=0.1,
value=0.5, # Reduced from 0.6
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
current_dir = os.path.dirname(os.path.abspath(__file__))
examples = gr.Examples(
examples=[
[42, False, os.path.join(current_dir, "z1.webp"), 20, 1, 0.5], # Reduced parameters
[42, False, os.path.join(current_dir, "z2.webp"), 20, 1, 0.5], # Reduced parameters
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer,
outputs=result,
cache_examples="lazy",
)
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
)
# Launch with minimal memory usage
demo.queue(max_size=1).launch(
share=False,
debug=True,
show_error=True,
max_threads=1,
enable_queue=True
) |