Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,802 Bytes
17a3bc3 456ed62 a17cbc4 c866b24 456ed62 4c9245b b725215 4c9245b b725215 4c9245b c866b24 456ed62 c866b24 b725215 c866b24 17a3bc3 456ed62 b725215 a17cbc4 b725215 4c9245b 456ed62 b725215 456ed62 b725215 456ed62 c866b24 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 00aa3d6 a17cbc4 b725215 456ed62 a17cbc4 b725215 456ed62 a17cbc4 456ed62 054b0cd 456ed62 054b0cd 456ed62 c866b24 456ed62 c866b24 456ed62 4c9245b 456ed62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import random
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
from transformers import pipeline
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Model loaded successfully.")
return model, model_config
# ๋ฒ์ญ ๋ชจ๋ธ ๋ก๋
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# Function to set up, generate, and process the audio
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
print(f"Original Prompt: {prompt}")
# ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ
translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
print(f"Translated Prompt: {translated_prompt}")
seed = random.randint(0, 2**63 - 1)
random.seed(seed)
torch.manual_seed(seed)
print(f"Using seed: {seed}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": translated_prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
css = """
footer {
visibility: hidden;
}
"""
# Setting up the Gradio Interface
interface = gr.Interface(theme="Nymbo/Nymbo_Theme", css=css,
fn=generate_audio,
inputs=[
gr.Textbox(label="ํ๋กฌํํธ", placeholder="์ฌ๊ธฐ์ ํ
์คํธ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์"),
gr.Slider(0, 47, value=30, label="์ค๋์ค ๊ธธ์ด (์ด)"),
gr.Slider(10, 150, value=100, step=10, label="๋ํจ์ ๋จ๊ณ ์"),
gr.Slider(1, 15, value=7, step=0.1, label="CFG ์ค์ผ์ผ")
],
outputs=gr.Audio(type="filepath", label="์์ฑ๋ ์ค๋์ค"),
)
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
interface.launch()
|