flx-upscale / app.py
fantaxy's picture
Update app.py
c2d0882 verified
raw
history blame
7.02 kB
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
# Device and dtype setup
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
dtype = torch.bfloat16
else:
power_device = "CPU"
device = "cpu"
dtype = torch.float32
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load pipeline with memory optimizations
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=dtype
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
torch_dtype=dtype
)
pipe.to(device)
# Enable memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 512 * 512 # Reduced from 1024 * 1024
def check_resources():
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory
memory_allocated = torch.cuda.memory_allocated(0)
if memory_allocated/gpu_memory > 0.9: # 90% threshold
return False
return True
def process_input(input_image, upscale_factor, **kwargs):
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
)
gr.Info(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# resize to multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w_original, h_original, was_resized
@spaces.GPU
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
try:
if not check_resources():
gr.Warning("System resources are running low. Try reducing parameters.")
return None
if device == "cuda":
torch.cuda.empty_cache()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
true_input_image = input_image
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
# rescale with upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
generator = torch.Generator().manual_seed(seed)
gr.Info("Upscaling image...")
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
if was_resized:
gr.Info(
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
)
# resize to target desired size
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
image.save("output.jpg")
return [true_input_image, image, seed]
except RuntimeError as e:
if "out of memory" in str(e):
gr.Warning("Not enough GPU memory. Try reducing the upscale factor or image size.")
return None
raise e
except Exception as e:
gr.Error(f"An error occurred: {str(e)}")
return None
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=50,
step=1,
value=28,
)
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=2, # Reduced from 4
step=1,
value=2, # Reduced default
)
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.6,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
examples = gr.Examples(
examples=[
[42, False, "z1.webp", 28, 2, 0.6], # Updated upscale factor
[42, False, "z2.webp", 28, 2, 0.6], # Updated upscale factor
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer,
outputs=result,
cache_examples="lazy",
)
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
)
demo.queue().launch(share=False)