File size: 3,764 Bytes
7abf701
 
 
 
 
 
a6021dc
 
8ea8af0
7abf701
5114b0d
 
7abf701
 
 
 
 
 
 
 
 
 
8ea8af0
 
a6021dc
8ea8af0
a6021dc
8ea8af0
a6021dc
8ea8af0
7abf701
 
 
 
 
 
 
 
8ea8af0
7abf701
 
5114b0d
a2b21c2
 
 
 
5114b0d
7abf701
3319cd3
a2b21c2
 
 
 
 
 
7abf701
 
f4e88b8
797e81e
a2b21c2
 
 
7abf701
8ea8af0
 
a2b21c2
7abf701
8ea8af0
a2b21c2
 
8ea8af0
a2b21c2
8ea8af0
7abf701
8ea8af0
 
a2b21c2
7abf701
8ea8af0
 
 
 
7abf701
a6021dc
 
 
 
7abf701
 
8ea8af0
a6021dc
 
 
 
 
 
7abf701
4ff5580
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline

# Translation pipeline and hardware settings
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device)
dtype = torch.bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    # Korean input detection and translation
    if any('\uAC00' <= char <= '\uD7A3' for char in prompt):
        print("Translating Korean prompt...")
        translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
        print("Translated prompt:", translated_prompt)
        prompt = translated_prompt
        
    image = pipe(
            prompt = prompt,
            width = width,
            height = height,
            num_inference_steps = num_inference_steps,
            generator = generator,
            guidance_scale=0.0
    ).images[0]
    
    return image, seed

examples = [
    ["[ํ•œ๊ธ€] [์Šคํƒ€์ผ: ๋ชจ๋˜] [์ƒ‰์ƒ: ๋นจ๊ฐ•๊ณผ ๊ฒ€์ •] [์ปจ์…‰: ์‹๋‹น] [ํ…์ŠคํŠธ: '๋ง›์žˆ๋Š”์ง‘'] [๋ฐฐ๊ฒฝ: ์‹ฌํ”Œ]"],
    ["[Style: Corporate] [Color: Navy and Silver] [Concept: Finance] [Text: 'TRUST'] [Background: Professional]"],
    ["[Style: Dynamic] [Color: Purple and Orange] [Concept: Creative Agency] [Text: 'SPARK'] [Background: Abstract]"],
    ["[Style: Minimalist] [Color: Red and White] [Concept: Sports] [Text: 'POWER'] [Background: Clean]"]
]

css = """
footer {visibility: hidden}
.container {max-width: 850px; margin: auto; padding: 20px}
.title {text-align: center; margin-bottom: 20px}
#prompt {min-height: 50px}
#result {min-height: 400px}
.gr-box {border-radius: 10px; border: 1px solid #ddd}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    gr.HTML("<h1 class='title'>LOGO Generator AI</h1>")
    
    with gr.Column(elem_id="container"):
        with gr.Group():
            prompt = gr.Text(
                label="PROMPT",
                placeholder="Text input Prompt (Korean input supported)",
                lines=2
            )
            run_button = gr.Button("Generate Logo", variant="primary")
        
        with gr.Row():
            result = gr.Image(label="Generated Logo", show_label=True)
        
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Random Seed", value=True)
            
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                num_inference_steps = gr.Slider(label="Quality", minimum=1, maximum=50, step=1, value=4)
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )
        
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[result, seed]
        )

demo.launch()