Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline | |
# Translation pipeline and hardware settings | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device) | |
dtype = torch.bfloat16 | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Korean input detection and translation | |
if any('\uAC00' <= char <= '\uD7A3' for char in prompt): | |
print("Translating Korean prompt...") | |
translated_prompt = translator(prompt, max_length=512)[0]['translation_text'] | |
print("Translated prompt:", translated_prompt) | |
prompt = translated_prompt | |
image = pipe( | |
prompt = prompt, | |
width = width, | |
height = height, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
examples = [ | |
["[ํ๊ธ] [์คํ์ผ: ๋ชจ๋] [์์: ๋นจ๊ฐ๊ณผ ๊ฒ์ ] [์ปจ์ : ์๋น] [ํ ์คํธ: '๋ง์๋์ง'] [๋ฐฐ๊ฒฝ: ์ฌํ]"], | |
["[Style: Corporate] [Color: Navy and Silver] [Concept: Finance] [Text: 'TRUST'] [Background: Professional]"], | |
["[Style: Dynamic] [Color: Purple and Orange] [Concept: Creative Agency] [Text: 'SPARK'] [Background: Abstract]"], | |
["[Style: Minimalist] [Color: Red and White] [Concept: Sports] [Text: 'POWER'] [Background: Clean]"] | |
] | |
css = """ | |
footer {visibility: hidden} | |
.container {max-width: 850px; margin: auto; padding: 20px} | |
.title {text-align: center; margin-bottom: 20px} | |
#prompt {min-height: 50px} | |
#result {min-height: 400px} | |
.gr-box {border-radius: 10px; border: 1px solid #ddd} | |
""" | |
def create_snow_effect(): | |
# CSS ์คํ์ผ ์ ์ | |
snow_css = """ | |
@keyframes snowfall { | |
0% { | |
transform: translateY(-10vh) translateX(0); | |
opacity: 1; | |
} | |
100% { | |
transform: translateY(100vh) translateX(100px); | |
opacity: 0.3; | |
} | |
} | |
.snowflake { | |
position: fixed; | |
color: white; | |
font-size: 1.5em; | |
user-select: none; | |
z-index: 1000; | |
pointer-events: none; | |
animation: snowfall linear infinite; | |
} | |
""" | |
# JavaScript ์ฝ๋ ์ ์ | |
snow_js = """ | |
function createSnowflake() { | |
const snowflake = document.createElement('div'); | |
snowflake.innerHTML = 'โ'; | |
snowflake.className = 'snowflake'; | |
snowflake.style.left = Math.random() * 100 + 'vw'; | |
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's'; | |
snowflake.style.opacity = Math.random(); | |
document.body.appendChild(snowflake); | |
setTimeout(() => { | |
snowflake.remove(); | |
}, 5000); | |
} | |
setInterval(createSnowflake, 200); | |
""" | |
# CSS์ JavaScript๋ฅผ ๊ฒฐํฉํ HTML | |
snow_html = f""" | |
<style> | |
{snow_css} | |
</style> | |
<script> | |
{snow_js} | |
</script> | |
""" | |
return gr.HTML(snow_html) | |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: | |
create_snow_effect() | |
gr.HTML("<h1 class='title'>LOGO Generator AI</h1>") | |
with gr.Column(elem_id="container"): | |
with gr.Group(): | |
prompt = gr.Text( | |
label="PROMPT", | |
placeholder="Text input Prompt (Korean input supported)", | |
lines=2 | |
) | |
run_button = gr.Button("Generate Logo", variant="primary") | |
with gr.Row(): | |
result = gr.Image(label="Generated Logo", show_label=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Random Seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512) | |
num_inference_steps = gr.Slider(label="Quality", minimum=1, maximum=50, step=1, value=4) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.launch() |