Spaces:
Running
Running
File size: 2,876 Bytes
83746e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import requests
import os
import json
from collections import deque
# νκ²½ λ³μμμ API ν ν° κ°μ Έμ€κΈ°
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
# API ν ν°μ΄ μ€μ λμ΄ μλμ§ νμΈ
if not TOKEN:
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.")
# λν κΈ°λ‘μ κ΄λ¦¬νλ ν (μ΅λ 10κ°μ λν κΈ°λ‘μ μ μ§)
memory = deque(maxlen=10)
def respond(
message,
history: list[tuple[str, str]],
system_message="AI Assistant Role",
max_tokens=512,
temperature=0.7,
top_p=0.95,
):
# μμ€ν
λ©μμ§μ μ λμ¬ μΆκ°
system_prefix = "System: μ
λ ₯μ΄μ μΈμ΄(μμ΄, νκ΅μ΄, μ€κ΅μ΄, μΌλ³Έμ΄ λ±)μ λ°λΌ λμΌν μΈμ΄λ‘ λ΅λ³νλΌ."
full_system_message = f"{system_prefix}{system_message}"
# νμ¬ λν λ΄μ©μ λ©λͺ¨λ¦¬μ μΆκ°
memory.append((message, None))
messages = [{"role": "system", "content": full_system_message}]
# λ©λͺ¨λ¦¬μμ λν κΈ°λ‘μ κ°μ Έμ λ©μμ§ λͺ©λ‘μ μΆκ°
for val in memory:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
headers = {
"Authorization": f"Bearer {TOKEN}",
"Content-Type": "application/json"
}
payload = {
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"messages": messages
}
response = requests.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload, stream=True)
response_text = ""
for chunk in response.iter_content(chunk_size=None):
if chunk:
chunk_data = chunk.decode('utf-8')
response_json = json.loads(chunk_data)
# content μμλ§ μΆλ ₯
if "choices" in response_json:
content = response_json["choices"][0]["message"]["content"]
response_text = content
# λ§μ§λ§ λνμ λͺ¨λΈμ μλ΅μ μΆκ°νμ¬ λ©λͺ¨λ¦¬μ μ μ₯
memory[-1] = (message, response_text)
yield content
theme = "Nymbo/Nymbo_Theme"
# Gradio ChatInterface μ€μ
demo = gr.ChatInterface(
fn=respond,
theme=theme,
additional_inputs=[
gr.Textbox(value="AI Assistant Role", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.queue(max_threads=20).launch()
|