ofai-kai-backup / app.py
seawolf2357's picture
Update app.py
8ce49a6 verified
raw
history blame
1.87 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
# Set up the inference API client
hf_client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=os.getenv("HF_TOKEN"))
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
system_prefix = """
If the input language is Korean, respond in Korean. If it's English, respond in English.
"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] # Add prefix
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in hf_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token is not None:
response += token.strip("") # Remove tokens
yield response
theme = "Nymbo/Nymbo_Theme"
css = """
footer {
visibility: hidden;
}
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="""
You are an AI assistant.
""", label="System Prompt"),
gr.Slider(minimum=1, maximum=2000, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
theme=theme, # Apply theme
css=css # Apply CSS
)
if __name__ == "__main__":
demo.launch()