Spaces:
Running
Running
import gradio as gr | |
import aiohttp | |
import os | |
import json | |
from collections import deque | |
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") | |
if not TOKEN: | |
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.") | |
print(f"API Token: {TOKEN[:5]}...{TOKEN[-5:]}") # Check API token | |
memory = deque(maxlen=10) | |
async def test_api(): | |
headers = {"Authorization": f"Bearer {TOKEN}"} | |
async with aiohttp.ClientSession() as session: | |
async with session.get("https://api-inference.huggingface.co/models/mistralai/Mistral-Nemo-Instruct-2407", headers=headers) as response: | |
print(f"Test API response: {await response.text()}") | |
async def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message="AI Assistant Role", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
): | |
system_prefix = "System: Respond in the same language as the input (English, Korean, Chinese, Japanese, etc.)." | |
full_system_message = f"{system_prefix}{system_message}" | |
memory.append((message, None)) | |
messages = [{"role": "system", "content": full_system_message}] | |
for val in memory: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
headers = { | |
"Authorization": f"Bearer {TOKEN}", | |
"Content-Type": "application/json" | |
} | |
payload = { | |
"model": "mistralai/Mistral-Nemo-Instruct-2407", | |
"max_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"messages": messages, | |
"stream": True | |
} | |
try: | |
async with aiohttp.ClientSession() as session: | |
async with session.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload) as response: | |
print(f"Response status: {response.status}") | |
if response.status != 200: | |
error_text = await response.text() | |
print(f"Error response: {error_text}") | |
yield "An API response error occurred. Please try again." | |
return | |
response_text = "" | |
async for chunk in response.content: | |
if chunk: | |
try: | |
chunk_data = chunk.decode('utf-8') | |
response_json = json.loads(chunk_data) | |
if "choices" in response_json: | |
content = response_json["choices"][0]["message"]["content"] | |
response_text += content | |
yield response_text | |
except json.JSONDecodeError: | |
continue | |
if not response_text: | |
yield "I apologize, but I couldn't generate a response. Please try again." | |
except Exception as e: | |
print(f"Exception occurred: {str(e)}") | |
yield f"An error occurred: {str(e)}" | |
memory[-1] = (message, response_text) | |
async def chat(message, history, system_message, max_tokens, temperature, top_p): | |
response = "" | |
async for chunk in respond(message, history, system_message, max_tokens, temperature, top_p): | |
response = chunk | |
yield response | |
theme = "Nymbo/Nymbo_Theme" | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
demo = gr.ChatInterface( | |
css=css, | |
fn=chat, | |
theme=theme, | |
additional_inputs=[ | |
gr.Textbox(value="AI Assistant Role", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
] | |
) | |
if __name__ == "__main__": | |
import asyncio | |
asyncio.run(test_api()) # Run API test | |
demo.queue().launch(max_threads=20) |